The Hartogs-type extension theorem for meromorphic mappings into $q$-complete complex spaces
Bollettino della Unione matematica italiana, Série 8, 2B (1999) no. 2, pp. 251-261.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Si dimostra un risultato di prolungamento per applicazioni meromorfe a valori in uno spazio $q$-completo che generalizza direttamente il risultato classico di Hartogs e migliora risultati di K. Stein.
@article{BUMI_1999_8_2B_2_a1,
     author = {Ivashkovich, Sergei and Silva, Alessandro},
     title = {The {Hartogs-type} extension theorem for meromorphic mappings into $q$-complete complex spaces},
     journal = {Bollettino della Unione matematica italiana},
     pages = {251--261},
     publisher = {mathdoc},
     volume = {Ser. 8, 2B},
     number = {2},
     year = {1999},
     zbl = {0932.32019},
     mrnumber = {518045},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_2_a1/}
}
TY  - JOUR
AU  - Ivashkovich, Sergei
AU  - Silva, Alessandro
TI  - The Hartogs-type extension theorem for meromorphic mappings into $q$-complete complex spaces
JO  - Bollettino della Unione matematica italiana
PY  - 1999
SP  - 251
EP  - 261
VL  - 2B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_2_a1/
LA  - en
ID  - BUMI_1999_8_2B_2_a1
ER  - 
%0 Journal Article
%A Ivashkovich, Sergei
%A Silva, Alessandro
%T The Hartogs-type extension theorem for meromorphic mappings into $q$-complete complex spaces
%J Bollettino della Unione matematica italiana
%D 1999
%P 251-261
%V 2B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_2_a1/
%G en
%F BUMI_1999_8_2B_2_a1
Ivashkovich, Sergei; Silva, Alessandro. The Hartogs-type extension theorem for meromorphic mappings into $q$-complete complex spaces. Bollettino della Unione matematica italiana, Série 8, 2B (1999) no. 2, pp. 251-261. http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_2_a1/

[B1] D. Barlet , Convexité de l'espace des cycles, Bull. Soc. Math. France, 106 (1978), 373-397. | fulltext mini-dml | MR | Zbl

[B2] D. Barlet , Espace analytique reduit des cycles analytiques complexes compacts d'un espace analytique complexe de dimension finie, Seminaire Norguet IX, Lect. Notes Math. (1975), 1-157. | MR | Zbl

[H] F. Hartogs , Zur Theorie der analytischen Funktionen mehrerer unabhängiger Verändenlichen insbesondere über die Darstellung derselben durch Reihen, wel che nach Potenzen einer Veränderlichen fortschreiten, Math. Ann., 62 (1906), 1-88. | MR

[I1] S. Ivashkovich , The Hartogs type extension Theorem for meromorphic maps into compact Kaehler manifolds, Invent. Math., 109 (1992), 47-54. | MR | Zbl

[I2] S. Ivashkovich , Spherical shells as obstructions for the extension of holomorphic mappings, The Journal of Geometric Analysis, 2 (1992), 683-692. | MR | Zbl

[I3] S. Ivashkovich , Continuity principle and extension properties of meromorphic mappings with values in non Kähler manifolds, MSRI Preprint No. 1997-033. | Zbl

[I4] S. Ivashkovich , One example in concern with extension and separate analyticity properties of meromorphic mappings, to appear in Amer. J. Math. | fulltext mini-dml | MR | Zbl

[Kl] M. Klimek , Pluripotential theory, London. Math. Soc. Monographs, New Series 6 (1991). | MR | Zbl

[O] T. Ohsawa , Completeness of Noncompact Analytic Spaces, Publ. RIMS Kyoto Univ., 20 (1984), 683-692. | fulltext mini-dml | MR | Zbl

[R] R. Remmert , Holomorphe und meromorphe Abbildungen komplexer Räume, Math. Ann., 133 (1957), 328-370. | MR | Zbl

[S1] Y.-T. Siu , Techniques of extension of analytic objects, Marcel Dekker, New York (1974). | MR | Zbl

[S2] Y.-T. Siu , Extension of meromorphic maps into Kähler manifolds, Ann. Math., 102 (1975), 421-462. | MR | Zbl

[St] K. Stein , Topics on holomorphic correspondences, Rocky Mountains J. Math., 2 (1972), 443-463. | fulltext mini-dml | MR | Zbl