The fibre of the Prym map in genus four
Bollettino della Unione matematica italiana, Série 8, 2B (1999) no. 1, pp. 219-229.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In questa nota si dà una descrizione della fibra della mappa di Prym in genere 4. Se $JX$ è la Jacobiana di una curva di genere 3, allora la fibra della mappa di Prym in $JX$ si ottiene dalla varietà di Kummer $KX$ mediante due scoppiamenti: $\sigma_{1} : KX(0) \to KX$ che è lo scoppiamento di $KX$ nell'origine e $\sigma_{2} : \widetilde{KX(0)} \to KX(0)$ che è lo scoppiamento lungo una curva isomorfa a $X$.
@article{BUMI_1999_8_2B_1_a9,
     author = {Hidalgo-Sol{\'\i}s, Laura and Recillas-Pishmish, Sevin},
     title = {The fibre of the {Prym} map in genus four},
     journal = {Bollettino della Unione matematica italiana},
     pages = {219--229},
     publisher = {mathdoc},
     volume = {Ser. 8, 2B},
     number = {1},
     year = {1999},
     zbl = {0945.14016},
     mrnumber = {572974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_1_a9/}
}
TY  - JOUR
AU  - Hidalgo-Solís, Laura
AU  - Recillas-Pishmish, Sevin
TI  - The fibre of the Prym map in genus four
JO  - Bollettino della Unione matematica italiana
PY  - 1999
SP  - 219
EP  - 229
VL  - 2B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_1_a9/
LA  - en
ID  - BUMI_1999_8_2B_1_a9
ER  - 
%0 Journal Article
%A Hidalgo-Solís, Laura
%A Recillas-Pishmish, Sevin
%T The fibre of the Prym map in genus four
%J Bollettino della Unione matematica italiana
%D 1999
%P 219-229
%V 2B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_1_a9/
%G en
%F BUMI_1999_8_2B_1_a9
Hidalgo-Solís, Laura; Recillas-Pishmish, Sevin. The fibre of the Prym map in genus four. Bollettino della Unione matematica italiana, Série 8, 2B (1999) no. 1, pp. 219-229. http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_1_a9/

[Be.1] A. Beauville , Prym varietes and the Schottky problem, Invent. Math., 41 (1977), 149-196. | MR | Zbl

[Be.2] A. Beauville , Variétés de Prym et Jacobiennes intermédiares, Ann. Sci. École Norm. Sup., 10 (1977), 309-391. | fulltext mini-dml | MR | Zbl

[DC-R] A. Del Centina - S. Recillas , On a property of the Kummer variety and a relation between two moduli spaces of curves, in Algebraic Geometry and Complex Analysis, Proceedings, Lect. Notes in Math., 1414, Springer-Verlag (1989), 28-50. | Zbl

[DM] P. Deligne - D. Mumford , The irreducibility of the space of curves of a given genus, Publ. Math. I.H.E.S., 36 (1969), 75-109. | fulltext mini-dml | MR | Zbl

[Do.] R. Donagi , The fibers of the Prym map, Cont. Math., Amer. Math. Soc., 136 (1992). | MR | Zbl

[DS] R. Donagi - R. C. Smith , The structure of the Prym map, Acta Math., 146 (1982), 25-102. | MR | Zbl

[F] J. Fay , Theta Functions on Riemann Surfaces, Lecture Notes, 352, Springer-Verlag (1973). | MR | Zbl

[FS] R. Friedman - R. Smith , The generic Torelli theorem for the Prym map, Invent. Math., 74 (1982), 473-490. | MR | Zbl

[K] S. Kleiman , Algebraic Cycles and the Weil Conjectures, Advanced Studies in Pure Mathematics, North-Holland, 3, Amsterdam (1968). | MR | Zbl

[Har.] R. Hartshorne , Algebraic Geometry, Springer-Verlag, New York (1977). | MR | Zbl

[Ma] L. Masiewicki , Universal properties of Prym varieties with an aplication to algebraic curves of genus five, Trans. Amer. Math. Soc, 222 (1976), 221-240. | MR | Zbl

[M] D. Mumford , Prym Varietes - I, Contributions to Analysis, Academic Press, New York (1974). | MR | Zbl

[GIT] D. Mumford - J. Fogarty - F. Kirwan , Geometric Invariant Theory, third edition, Springer-Verlag, Heidelberg (1994). | MR | Zbl

[MP] J. M. Muñoz-Porras , Characterization of the Jacobian varieties in arbitrary characteristic, Comp. Math, 61 (1987), 369-381. | fulltext mini-dml | MR | Zbl

[P] H. Popp , Moduli theory and classification theory of algebraic varieties, Lecture Notes in Math., 620, Spinger-Verlag, Berlin-Heidelberg-New York (1977). | MR | Zbl

[Rec.1] Recillas S. , Jacobians of curves with $g^{4}_{1}$'s are Prym's varietes of trigonal curves, Bol. Soc. Mat. Mexicana, 19 (1974), 9-13. | MR | Zbl

[Rec.2] S. Recillas , Symmetric Cubic Surfaces and Curves of Genus 3 and 4, Boll. Un. Mat. (7), 7-B (1993), 787-819. | MR | Zbl

[V] A. Verra , The Fibre of the Prym map in genus three, Math. Ann., 276 (1987), 433-448. | MR | Zbl

[W] G. Welters , Curves of twice the minimal class on principally polarized abelian variety, Nederl. Akad. Wetensh. Proc. Ser. A., 90 (1987), 87-109. | MR | Zbl