Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_1999_8_2B_1_a7, author = {Supino, Paola}, title = {3-folds of general type with $K^3=4p_g-14$}, journal = {Bollettino della Unione matematica italiana}, pages = {169--187}, publisher = {mathdoc}, volume = {Ser. 8, 2B}, number = {1}, year = {1999}, zbl = {0935.14025}, mrnumber = {770932}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_1_a7/} }
Supino, Paola. 3-folds of general type with $K^3=4p_g-14$. Bollettino della Unione matematica italiana, Série 8, 2B (1999) no. 1, pp. 169-187. http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_1_a7/
[1] Geometry of Algebraic Curves, Springer-Verlag, Berlin, Heidelberg, New York (1985). | MR | Zbl
- - - ,[2] Algebraic surfaces of general type with $c_{1}^{2} = 3P_{g}-7$, Tohoku Math. J., 42 (1990), 517-536. | fulltext mini-dml | MR | Zbl
- ,[3] On a property of Castelnuovo varieties, Trans. Amer. Math. Soc., 303 (1987), 201-210. | MR | Zbl
,[4] Contribution à la théorie des variétés algébriques, Thése d'Agrégation de l'enseignement supérior présentée à la Faculté des Science de l'Université de Liege Bruxelles (1947). | MR | Zbl
,[5] A bound on the geometric genus of projective varieties, Ann. Sc. Norm. Sup. Pisa, 8 (1981), 35-68. | fulltext mini-dml | MR | Zbl
,[6] On canonical surfaces of general type with $K_{1}^{2} = 3\chi - 10$, Math. Z., 198 (1988), 83-93. | MR | Zbl
,[7] Canonical 3-folds, in Géométrie algébrique d'Angers, A. Beauville ed. (1979), 273-310. | MR | Zbl
,