Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_1999_8_2B_1_a2, author = {Gramchev, Todor and Rodino, Luigi}, title = {Gevrey solvability for semilinear partial differential equations with multiple characteristics}, journal = {Bollettino della Unione matematica italiana}, pages = {65--120}, publisher = {mathdoc}, volume = {Ser. 8, 2B}, number = {1}, year = {1999}, zbl = {0924.35030}, mrnumber = {1172111}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_1_a2/} }
TY - JOUR AU - Gramchev, Todor AU - Rodino, Luigi TI - Gevrey solvability for semilinear partial differential equations with multiple characteristics JO - Bollettino della Unione matematica italiana PY - 1999 SP - 65 EP - 120 VL - 2B IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_1_a2/ LA - en ID - BUMI_1999_8_2B_1_a2 ER -
%0 Journal Article %A Gramchev, Todor %A Rodino, Luigi %T Gevrey solvability for semilinear partial differential equations with multiple characteristics %J Bollettino della Unione matematica italiana %D 1999 %P 65-120 %V 2B %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_1_a2/ %G en %F BUMI_1999_8_2B_1_a2
Gramchev, Todor; Rodino, Luigi. Gevrey solvability for semilinear partial differential equations with multiple characteristics. Bollettino della Unione matematica italiana, Série 8, 2B (1999) no. 1, pp. 65-120. http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_1_a2/
[1] Opérateurs pseudo-différentiels et théorème de Nash-Moser, Inter Edition, Editions du CNRS, Meudon, Paris (1991). | MR | Zbl
- ,[2] Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sc. École Norm. Sup., 14 (1981), 161-205. | fulltext mini-dml | MR | Zbl
,[3] A necessary condition of Gevrey solvability for differential operators with double characteristics, Comm. Partial Diff. Eqs., 14 (1989), 981-1009. | MR | Zbl
,[4] Nonstrictly hyperbolic nonlinear systems, Math. Ann., 277 (1987), 213-232. | MR | Zbl
,[5] Analytic-Gevrey hypoellipticity for a class of pseudodifferential operators with multiple characteristics, Comm. Partial Diff. Eqs., 15 (1989), 81-96. | MR | Zbl
- - ,[6] Micro-elliptic Gevrey regularity for nonlinear partial differential equations, Boll. Un. Mat. Ital., 10-B (1996), 199-232. | MR | Zbl
- ,[7] On a class of unsolvable operators, Ann. Scuola Norm. Sup. Pisa, 20 (1993), 357-369. | fulltext mini-dml | MR | Zbl
- ,[8] Analytic regularity for solutions to semi-linear weakly hyperbolic equations, Rend. Sem. Mat. Univ. Politec. Torino, 51 (1993), 387-396. | MR | Zbl
- ,[9] On local solvability in Gevrey classes of linear partial differential operators with multiple characteristics, Comm. Partial Diff. Eqs., 14 (1988), 1-25. | MR | Zbl
,[10] On local solvability of linear partial differential operators with multiple characteristics, J. Diff. Eqs., 81 (1989), 275-293. | MR | Zbl
,[11] Gevrey solvability for hyperbolic operators with costant multiplicity, in Recent Developments in Hyperbolic Equations, Pitman Res. Notes in Math., 183, 290-304, Longman, Harlow (1988). | MR | Zbl
- ,[12] On the life span of the analytic solutions to quasilinear weakly hyperbolic equations, Indiana Univ. Math. J., 40, 1 (1991), 71-99. | MR | Zbl
- ,[13] New trends in the theory of nonlinear weakly hyperbolic equations of second order, Proc. 2-nd WCNA, Athens, Greece, 10-17 July 1996, Nonl. Anal. TMA, 30, 4 (1997), 2507-2515. | MR | Zbl
- ,[14] Resolubilité local pour des équations semi-linéaires complexes, Can. J. Math., 42 (1990), 126-140. | MR | Zbl
,[15] Linear Differential Equations of Principal Type, Nauka, Moscow (1994); Plenum Press, New York (1985). | Zbl
,[16] Gevrey regularity for nonlinear analytic parabolic equations, Comm. Partial Diff. Eqs., to appear. | MR | Zbl
- ,[17] Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., 87 (1989), 359-369. | MR | Zbl
- ,[18] Local solvability for semilinear equations with multiple characteristics, Ann. Univ. Ferrara, Sez VII, Sc. Mat. Suppl. Vol. 41, 1995 (1997), 199-209. | MR | Zbl
,[19] A necessary condition for local solvability of a pseudo-differential equation having multiple characteristics, J. Diff. Eqs., 19 (1975), 176-200. | MR | Zbl
,[20] Local solvability of nonlinear partial differential equations of real principal type, preprint.
- ,[21] Problème de Goursat nonlinéaire dans les espaces de Gevrey pour les équations de Kirchhoff généralisées, J. Math. Pures Appl., 75 (1996), 569-593. | MR | Zbl
- ,[22] Powers of Mizohata type operators in Gevrey classes, Boll. Un. Mat. Ital., (7) 5-B (1991), 135-156. | MR | Zbl
,[23] Nonsolvability for differential operators with multiple complex characteristics, J. Math. Kyoto Univ., 33, 4 (1993), 989-1002. | fulltext mini-dml | MR | Zbl
,[24] Local solvability of semi-linear partial differential equations, Ann. Univ. Ferrara Sez. VII (N.S.), 25 (1989), 147-154. | MR | Zbl
- ,[25] Rapidly convergent iteration method for simultaneous normal forms of commuting maps, preprint, 1997. | MR | Zbl
- ,[26] On a class of elliptic pseudodifferential operators degenerate on a submanifold, Mat. Sb., 84 (1971), 163-195 (in russian); Math. USSR Sb., 13 (1971), 155-185. | Zbl
,[27] Local solvability of partial differential equations, Rev. Un. Mat. Argentina, 37 (1991), 77-86. | MR | Zbl
,[28] On the local solvability of semilinear equations, Comm. Partial Diff. Eqs., 20 (1995), 1777-1789. | MR | Zbl
- ,[29] The Analysis of Linear Partial Differential Operators, I-IV, Springer-Verlag, Berlin, 1983-85. | Zbl
,[30] Local solution of Cauchy problem for nonlinear hyperbolic systems in Gevrey classes, Hokkaido Math. J., 12 (1983), 434-460. | MR
,[31] Microhyperbolic operators in Gevrey classes, Publ. RIMS Kyoto Univ., 25 (1989), 169-221. | fulltext mini-dml | MR | Zbl
- ,[32] Systèmes nonlinéaires hyperboliques nonstricts, Math. Ann., 170 (1967), 167-205. | MR | Zbl
- ,[33] Analyticity of solutions for a generalized Euler equation, J. Diff. Eqs., 133 (1997), 321-339. | MR | Zbl
- ,[34] Partial Differential Equations with Multiple Characteristics, Akademie Verlag-Wiley, Berlin (1997). | MR | Zbl
- ,[35] Some examples of hypoelliptic partial differential equations, Math. Ann., 221 (1976), 167-181. | MR | Zbl
,[36] Remarques sur un théorème de J. M. Bony, Rend. Circ. Mat. Palermo, bf 2, 1 (1981), 1-20. | MR | Zbl
,[37] Smooth tame Fréchet algebras and Lie groups of pseudodifferential operators, Comm. Pure Appl. Math., 44 (1991), 309-337. | MR | Zbl
,[38] Gevrey hypoelliptic operators which are not $C^{\infty}$-hypoelliptic, J. Math. Kyoto Univ., 28 (1988), 311-322. | fulltext mini-dml | MR | Zbl
,[39] A class of differential operators with multiple characteristics which have not solutions, Pliska Stud. Math. Bulg., 3 (1981), 47-60 (Russian). | MR | Zbl
,[40] On the local solvability of a class of PDE with double characteristics, Trudy Sem. Petrovsk., 1 (1975), 237-278 (Russian); Amer. Math. Soc. Transl., 118, 2 (1982), 51-89. | Zbl
,[41] Time analyticity and Gevrey regularity for solutions of a class of dissipative partial differential equations, Nonl. Anal., TMA, 16 (1991), 959-980. | MR | Zbl
,[42] Nonlinear microlocal analysis of semi-linear hyperbolic systems in one space dimension, Duke Math. J., 49 (1982), 397-475. | fulltext mini-dml | MR | Zbl
- ,[43] Levi conditions and global Gevrey regularity for the solutions of quasilinear weakly hyperbolic equations, Math. Nachr., 178 (1996), 285-307. | MR | Zbl
- ,[44] Linear Partial Differential Operators in Gevrey Spaces, World Scientific, Singapore, New Jersey, London, Hong Kong (1993). | MR | Zbl
,[45] Pseudodifferential Operators and Nonlinear PDE, Birkäuser, Boston (1991). | MR | Zbl
,[46] Introduction to Pseudodifferential Operators and Fourier Integral Operators, vol. I-II, Plenum Press, New York (1980). | Zbl
,[47] Le problème de Goursat non linéaire, J. Math. Pures Appl., 58 (1979), 309-337. | MR | Zbl
,