Gevrey solvability for semilinear partial differential equations with multiple characteristics
Bollettino della Unione matematica italiana, Série 8, 2B (1999) no. 1, pp. 65-120.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Vengono considerate equazioni alle derivate parziali semilineari con caratteristiche multiple. Si studia in particolare la loro risolubilità locale e la buona positura del problema di Cauchy nell'ambito delle classi di Gevrey.
@article{BUMI_1999_8_2B_1_a2,
     author = {Gramchev, Todor and Rodino, Luigi},
     title = {Gevrey solvability for semilinear partial differential equations with multiple characteristics},
     journal = {Bollettino della Unione matematica italiana},
     pages = {65--120},
     publisher = {mathdoc},
     volume = {Ser. 8, 2B},
     number = {1},
     year = {1999},
     zbl = {0924.35030},
     mrnumber = {1172111},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_1_a2/}
}
TY  - JOUR
AU  - Gramchev, Todor
AU  - Rodino, Luigi
TI  - Gevrey solvability for semilinear partial differential equations with multiple characteristics
JO  - Bollettino della Unione matematica italiana
PY  - 1999
SP  - 65
EP  - 120
VL  - 2B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_1_a2/
LA  - en
ID  - BUMI_1999_8_2B_1_a2
ER  - 
%0 Journal Article
%A Gramchev, Todor
%A Rodino, Luigi
%T Gevrey solvability for semilinear partial differential equations with multiple characteristics
%J Bollettino della Unione matematica italiana
%D 1999
%P 65-120
%V 2B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_1_a2/
%G en
%F BUMI_1999_8_2B_1_a2
Gramchev, Todor; Rodino, Luigi. Gevrey solvability for semilinear partial differential equations with multiple characteristics. Bollettino della Unione matematica italiana, Série 8, 2B (1999) no. 1, pp. 65-120. http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_1_a2/

[1] S. Alinhac - P. Gérard , Opérateurs pseudo-différentiels et théorème de Nash-Moser, Inter Edition, Editions du CNRS, Meudon, Paris (1991). | MR | Zbl

[2] J.-M. Bony , Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sc. École Norm. Sup., 14 (1981), 161-205. | fulltext mini-dml | MR | Zbl

[3] F. Cardoso , A necessary condition of Gevrey solvability for differential operators with double characteristics, Comm. Partial Diff. Eqs., 14 (1989), 981-1009. | MR | Zbl

[4] W. Craig , Nonstrictly hyperbolic nonlinear systems, Math. Ann., 277 (1987), 213-232. | MR | Zbl

[5] L. Cattabriga - L. Rodino - L. Zanghirati , Analytic-Gevrey hypoellipticity for a class of pseudodifferential operators with multiple characteristics, Comm. Partial Diff. Eqs., 15 (1989), 81-96. | MR | Zbl

[6] Hua Chen - L. Rodino , Micro-elliptic Gevrey regularity for nonlinear partial differential equations, Boll. Un. Mat. Ital., 10-B (1996), 199-232. | MR | Zbl

[7] M. Cicognani - L. Zanghirati , On a class of unsolvable operators, Ann. Scuola Norm. Sup. Pisa, 20 (1993), 357-369. | fulltext mini-dml | MR | Zbl

[8] M. Cicognani - L. Zanghirati , Analytic regularity for solutions to semi-linear weakly hyperbolic equations, Rend. Sem. Mat. Univ. Politec. Torino, 51 (1993), 387-396. | MR | Zbl

[9] A. Corli , On local solvability in Gevrey classes of linear partial differential operators with multiple characteristics, Comm. Partial Diff. Eqs., 14 (1988), 1-25. | MR | Zbl

[10] A. Corli , On local solvability of linear partial differential operators with multiple characteristics, J. Diff. Eqs., 81 (1989), 275-293. | MR | Zbl

[11] A. Corli - L. Rodino , Gevrey solvability for hyperbolic operators with costant multiplicity, in Recent Developments in Hyperbolic Equations, Pitman Res. Notes in Math., 183, 290-304, Longman, Harlow (1988). | MR | Zbl

[12] P. D'Ancona - S. Spagnolo , On the life span of the analytic solutions to quasilinear weakly hyperbolic equations, Indiana Univ. Math. J., 40, 1 (1991), 71-99. | MR | Zbl

[13] P. D'Ancona - M. Reissig , New trends in the theory of nonlinear weakly hyperbolic equations of second order, Proc. 2-nd WCNA, Athens, Greece, 10-17 July 1996, Nonl. Anal. TMA, 30, 4 (1997), 2507-2515. | MR | Zbl

[14] B. Dehman , Resolubilité local pour des équations semi-linéaires complexes, Can. J. Math., 42 (1990), 126-140. | MR | Zbl

[15] Y. Egorov , Linear Differential Equations of Principal Type, Nauka, Moscow (1994); Plenum Press, New York (1985). | Zbl

[16] A. Ferrari - E. Titi , Gevrey regularity for nonlinear analytic parabolic equations, Comm. Partial Diff. Eqs., to appear. | MR | Zbl

[17] C. Foias - R. Temam , Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., 87 (1989), 359-369. | MR | Zbl

[18] G. Garello , Local solvability for semilinear equations with multiple characteristics, Ann. Univ. Ferrara, Sez VII, Sc. Mat. Suppl. Vol. 41, 1995 (1997), 199-209. | MR | Zbl

[19] R. Goldman , A necessary condition for local solvability of a pseudo-differential equation having multiple characteristics, J. Diff. Eqs., 19 (1975), 176-200. | MR | Zbl

[20] J. Goodman - D. Yang , Local solvability of nonlinear partial differential equations of real principal type, preprint.

[21] D. Gourdin - M. Mechab , Problème de Goursat nonlinéaire dans les espaces de Gevrey pour les équations de Kirchhoff généralisées, J. Math. Pures Appl., 75 (1996), 569-593. | MR | Zbl

[22] T. Gramchev , Powers of Mizohata type operators in Gevrey classes, Boll. Un. Mat. Ital., (7) 5-B (1991), 135-156. | MR | Zbl

[23] T. Gramchev , Nonsolvability for differential operators with multiple complex characteristics, J. Math. Kyoto Univ., 33, 4 (1993), 989-1002. | fulltext mini-dml | MR | Zbl

[24] T. Gramchev - P. Popivanov , Local solvability of semi-linear partial differential equations, Ann. Univ. Ferrara Sez. VII (N.S.), 25 (1989), 147-154. | MR | Zbl

[25] T. Gramchev - M. Yoshino , Rapidly convergent iteration method for simultaneous normal forms of commuting maps, preprint, 1997. | MR | Zbl

[26] V. Grushin , On a class of elliptic pseudodifferential operators degenerate on a submanifold, Mat. Sb., 84 (1971), 163-195 (in russian); Math. USSR Sb., 13 (1971), 155-185. | Zbl

[27] J. Hounie , Local solvability of partial differential equations, Rev. Un. Mat. Argentina, 37 (1991), 77-86. | MR | Zbl

[28] J. Hounie - P. Santiago , On the local solvability of semilinear equations, Comm. Partial Diff. Eqs., 20 (1995), 1777-1789. | MR | Zbl

[29] L. Hörmander , The Analysis of Linear Partial Differential Operators, I-IV, Springer-Verlag, Berlin, 1983-85. | Zbl

[30] K. Kajitani , Local solution of Cauchy problem for nonlinear hyperbolic systems in Gevrey classes, Hokkaido Math. J., 12 (1983), 434-460. | MR

[31] K. Kajitani - S. Wakabayashi , Microhyperbolic operators in Gevrey classes, Publ. RIMS Kyoto Univ., 25 (1989), 169-221. | fulltext mini-dml | MR | Zbl

[32] J. Leray - Y. Ohya , Systèmes nonlinéaires hyperboliques nonstricts, Math. Ann., 170 (1967), 167-205. | MR | Zbl

[33] C. D. Levermore - M. Oliver , Analyticity of solutions for a generalized Euler equation, J. Diff. Eqs., 133 (1997), 321-339. | MR | Zbl

[34] M. Mascarello - L. Rodino , Partial Differential Equations with Multiple Characteristics, Akademie Verlag-Wiley, Berlin (1997). | MR | Zbl

[35] A. Menikoff , Some examples of hypoelliptic partial differential equations, Math. Ann., 221 (1976), 167-181. | MR | Zbl

[36] Y. Meyer , Remarques sur un théorème de J. M. Bony, Rend. Circ. Mat. Palermo, bf 2, 1 (1981), 1-20. | MR | Zbl

[37] K. Payne , Smooth tame Fréchet algebras and Lie groups of pseudodifferential operators, Comm. Pure Appl. Math., 44 (1991), 309-337. | MR | Zbl

[38] T. Okaji , Gevrey hypoelliptic operators which are not $C^{\infty}$-hypoelliptic, J. Math. Kyoto Univ., 28 (1988), 311-322. | fulltext mini-dml | MR | Zbl

[39] P. Popivanov , A class of differential operators with multiple characteristics which have not solutions, Pliska Stud. Math. Bulg., 3 (1981), 47-60 (Russian). | MR | Zbl

[40] P. Popivanov , On the local solvability of a class of PDE with double characteristics, Trudy Sem. Petrovsk., 1 (1975), 237-278 (Russian); Amer. Math. Soc. Transl., 118, 2 (1982), 51-89. | Zbl

[41] K. Promislow , Time analyticity and Gevrey regularity for solutions of a class of dissipative partial differential equations, Nonl. Anal., TMA, 16 (1991), 959-980. | MR | Zbl

[42] J. Rauch - M. Reed , Nonlinear microlocal analysis of semi-linear hyperbolic systems in one space dimension, Duke Math. J., 49 (1982), 397-475. | fulltext mini-dml | MR | Zbl

[43] M. Reissig - K. Yagdjian , Levi conditions and global Gevrey regularity for the solutions of quasilinear weakly hyperbolic equations, Math. Nachr., 178 (1996), 285-307. | MR | Zbl

[44] L. Rodino , Linear Partial Differential Operators in Gevrey Spaces, World Scientific, Singapore, New Jersey, London, Hong Kong (1993). | MR | Zbl

[45] M. Taylor , Pseudodifferential Operators and Nonlinear PDE, Birkäuser, Boston (1991). | MR | Zbl

[46] F. Trèves , Introduction to Pseudodifferential Operators and Fourier Integral Operators, vol. I-II, Plenum Press, New York (1980). | Zbl

[47] C. Wagschal , Le problème de Goursat non linéaire, J. Math. Pures Appl., 58 (1979), 309-337. | MR | Zbl