Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_1999_8_2A_1S_a47, author = {Sampoli, Maria Lucia}, title = {Schemi risolutivi per la costruzione di curve interpolanti vincolate}, journal = {Bollettino della Unione matematica italiana}, pages = {197--200}, publisher = {mathdoc}, volume = {Ser. 8, 2A}, number = {1S}, year = {1999}, zbl = {0713.49021}, mrnumber = {1048347}, language = {it}, url = {http://geodesic.mathdoc.fr/item/BUMI_1999_8_2A_1S_a47/} }
TY - JOUR AU - Sampoli, Maria Lucia TI - Schemi risolutivi per la costruzione di curve interpolanti vincolate JO - Bollettino della Unione matematica italiana PY - 1999 SP - 197 EP - 200 VL - 2A IS - 1S PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_1999_8_2A_1S_a47/ LA - it ID - BUMI_1999_8_2A_1S_a47 ER -
Sampoli, Maria Lucia. Schemi risolutivi per la costruzione di curve interpolanti vincolate. Bollettino della Unione matematica italiana, Série 8, 2A (1999) no. 1S, pp. 197-200. http://geodesic.mathdoc.fr/item/BUMI_1999_8_2A_1S_a47/
[1] Set-Valued Analysis, Birkhäuser, Boston (1990). | MR | Zbl
and ,[2] On monotone and convex spline interpolation, Math. Comp., 46 (1986), 203-214. | DOI | MR | Zbl
,[3] An algorithm for computing shape preserving splines of arbitrary degree, Journal of Computational and Applied Mathematics, 22 (1988). | DOI | MR | Zbl
,[4] Abstract Schemes and Constrained Curve Interpolation, Designing and Creating Shape-Preserving Curves and Surfaces, J. Hoschek (ed.) B. G. Teubner, Stuttgart (1998), 121-130. | MR | Zbl
and ,[5] Automatic interpolation by fair, shape-preserving \( G^{2} \) space curves, Computer Aided Design, 30 (1998), 813-822. | Zbl
, and ,[6] Schwach verkoppelte Ungleichungssysteme und konvexe Spline-Interpolation, El. Math., 39 (1984), 85-96. | MR | Zbl
and ,[7] Comonotone parametric Hermite interpolation, Mathematical Methods for Curves and Surfaces II, M. Dahlen, T. Lyche and L.L. Schumaker (eds.), Vanderbilt University Press, Nashville (1998), 343-350. | MR | Zbl
and ,