Divisible designs admitting a Suzuki group as an automorphism group
Bollettino della Unione matematica italiana, Série 8, 1B (1998) no. 3, pp. 705-714.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Si costruiscono, facendo uso delle rette dei piani di Lüneburg e degli ovali di Tits, due classi di disegni divisibili ipersemplici che ammettono il gruppo di Suzuki $S(q)$ ($q=2^{2t+1}$ con $t\geq1$) come gruppo di automorfismi. Inoltre si studiano le strutture ottenute determinandone le orbite di $S(q)$.
@article{BUMI_1998_8_1B_3_a13,
     author = {Schulz, Ralph-Hardo and Spera, Antonino~Giorgio},
     title = {Divisible designs admitting a {Suzuki} group as an automorphism group},
     journal = {Bollettino della Unione matematica italiana},
     pages = {705--714},
     publisher = {mathdoc},
     volume = {Ser. 8, 1B},
     number = {3},
     year = {1998},
     zbl = {0908.05012},
     mrnumber = {779284},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_3_a13/}
}
TY  - JOUR
AU  - Schulz, Ralph-Hardo
AU  - Spera, Antonino~Giorgio
TI  - Divisible designs admitting a Suzuki group as an automorphism group
JO  - Bollettino della Unione matematica italiana
PY  - 1998
SP  - 705
EP  - 714
VL  - 1B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_3_a13/
LA  - en
ID  - BUMI_1998_8_1B_3_a13
ER  - 
%0 Journal Article
%A Schulz, Ralph-Hardo
%A Spera, Antonino~Giorgio
%T Divisible designs admitting a Suzuki group as an automorphism group
%J Bollettino della Unione matematica italiana
%D 1998
%P 705-714
%V 1B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_3_a13/
%G en
%F BUMI_1998_8_1B_3_a13
Schulz, Ralph-Hardo; Spera, Antonino~Giorgio. Divisible designs admitting a Suzuki group as an automorphism group. Bollettino della Unione matematica italiana, Série 8, 1B (1998) no. 3, pp. 705-714. http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_3_a13/

[BJL] T. Beth - D. Jungnickel - H. Lenz , Design Theory, Institut, Mannheim-Wien-Zürich (1985). | MR | Zbl

[Cz] T. Czerwinski , Finite translation planes with collineation groups doubly transitive on the points at infinity, J. Algebra, 22 (1970), 428-441. | MR | Zbl

[Ka] M. Kallaher , Translation Planes, Ch. 5 of F. Buekenhout (Ed.), Handbook of Incidence Geometry, Elsevier (1995). | MR | Zbl

[Lu1] H. Lüneburg , Translation Planes, Springer-Verlag, Berlin-Heidelber-New York (1980). | MR | Zbl

[Lu2] H. Lüneburg H. , Uber projective Ebenen, in denen jede Fahne von einer nicht trivialen Elation Invariant gelassen wied, Abh. Math. Sem. Univ. Hamburg, 29 (1965). 37-76. | MR | Zbl

[Sch] R.-H. Schulz , Uber translationsebenen mit Kollineationgruppen, die die Punkteder ausgezeichneten Geraten zweifach transitiv permutieren, Math. Z., 122 (1971), 246-266. | MR | Zbl

[Sp1] A. G. Spera , Transitive extensions of imprimitive groups, Discr. Math., 155 (1996), 233-241. | MR | Zbl

[Sp2] A. G. Spera , On divisible designs and local algebra, J. Comb. Designs, 3, n. 3 (1995), 203-212. | MR | Zbl

[Sp3] A. G. Spera , Divisible designs associated with translation planes admitting a 2-transitive collineation groups on the points at infinity, manuscript. | Zbl

[Su] M. Suzuki , On a class of doubly transitive groups, Ann. Math., 75 (1962) 105-145. | MR | Zbl