Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_1998_8_1B_3_a0, author = {Tartar, Luc}, title = {Imbedding theorems of {Sobolev} spaces into {Lorentz} spaces}, journal = {Bollettino della Unione matematica italiana}, pages = {479--500}, publisher = {mathdoc}, volume = {Ser. 8, 1B}, number = {3}, year = {1998}, zbl = {0929.46028}, mrnumber = {102740}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_3_a0/} }
Tartar, Luc. Imbedding theorems of Sobolev spaces into Lorentz spaces. Bollettino della Unione matematica italiana, Série 8, 1B (1998) no. 3, pp. 479-500. http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_3_a0/
[Br&Wa] A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 5 (1980), 773-789. | Zbl
- ,[Ga] Proprietà di alcune classi di funzioni in più variabili, Ricerche di Mat., Vol. VII (1958), 102-137. | MR | Zbl
,[Ha&Li&Po] Inequalities, Cambridge University Press, Cambridge, 1952. | Zbl
- - ,[Jo&Ni] On functions of bounded mean oscillations, Comm. Pure Appl. Math., 14 (1960), 93-140. | Zbl
- ,[Li] Problèmes aux limites dans les équations aux dérivées partielles, Les Presses de l'Université de Montréal, Montréal (1965). | MR | Zbl
,[Li&Pe] Sur une classe d'espaces d'interpolation, Inst. Hautes Etudes Sci. Publi. Math., 19 (1964), 5-68. | fulltext mini-dml | Zbl
- ,[O'Ne] Convolution operators and \(L^{p,q}\) spaces, Duke Math. J., 30 (1963), 129-142. | fulltext mini-dml | MR | Zbl
,[Pe] Espaces d'interpolation et espaces de Soboleff, Ann. Inst. Fourier (Grenoble), 16 (1966), 279-317. | fulltext mini-dml | MR | Zbl
,[Sc] Théorie des distributions, Hermann, Paris (1966). | MR | Zbl
,[So] Sur un théorème d'analyse fonctionnelle, Mat. Sb., 46 (1938), 471-497.
,[Tro] Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche di Matematica, XVIII (1969), 3-24. | MR | Zbl
,[Tru] On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483. | MR | Zbl
,