Asymptotic behavior and non-existence theorems for semilinear Dirichlet problems involving critical exponent on unbounded domains of the Heisenberg group
Bollettino della Unione matematica italiana, Série 8, 1B (1998) no. 1, pp. 139-168.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In questa nota dimostriamo stime asintotiche ottimali per le soluzioni deboli non negative del problema al contorno \begin{equation*} -\Delta_{\mathbb{H}^{n}}u=u^{(Q+2)/(Q-2)} \quad in \Omega, \quad u=0 \text{ in } \partial\Omega. \tag*{(*)} \end{equation*}$-\Delta_{\mathbb{H}^{n}}$ è il Laplaciano di Kohn sul gruppo di Heisenberg $\mathbb{H}^{n}$, $\Omega$ è un aperto non limitato e $Q=2n+2$ è la dimensione omogenea di $\mathbb{H}^{n}$. Utilizziamo successivamente le stime ottenute per dimostrare un teorema di non esistenza per (*) nel caso in cui $\Omega$ sia un semispazio di $\mathbb{H}^{n}$ con bordo parallelo al centro del gruppo.
@article{BUMI_1998_8_1B_1_a7,
     author = {Lanconelli, E. and Uguzzoni, F.},
     title = {Asymptotic behavior and non-existence theorems for semilinear {Dirichlet} problems involving critical exponent on unbounded domains of the {Heisenberg} group},
     journal = {Bollettino della Unione matematica italiana},
     pages = {139--168},
     publisher = {mathdoc},
     volume = {Ser. 8, 1B},
     number = {1},
     year = {1998},
     zbl = {0902.22006},
     mrnumber = {929280},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_1_a7/}
}
TY  - JOUR
AU  - Lanconelli, E.
AU  - Uguzzoni, F.
TI  - Asymptotic behavior and non-existence theorems for semilinear Dirichlet problems involving critical exponent on unbounded domains of the Heisenberg group
JO  - Bollettino della Unione matematica italiana
PY  - 1998
SP  - 139
EP  - 168
VL  - 1B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_1_a7/
LA  - en
ID  - BUMI_1998_8_1B_1_a7
ER  - 
%0 Journal Article
%A Lanconelli, E.
%A Uguzzoni, F.
%T Asymptotic behavior and non-existence theorems for semilinear Dirichlet problems involving critical exponent on unbounded domains of the Heisenberg group
%J Bollettino della Unione matematica italiana
%D 1998
%P 139-168
%V 1B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_1_a7/
%G en
%F BUMI_1998_8_1B_1_a7
Lanconelli, E.; Uguzzoni, F. Asymptotic behavior and non-existence theorems for semilinear Dirichlet problems involving critical exponent on unbounded domains of the Heisenberg group. Bollettino della Unione matematica italiana, Série 8, 1B (1998) no. 1, pp. 139-168. http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_1_a7/

[BC] A. Bahri - J. M. Coron , On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294. | MR | Zbl

[BeC] V. Benci - G. Cerami , Existence of positive solutions of the equation $-\Delta u + a(x)u = u^{(N+2)/(N-2)}$ in $\mathbb{R}^{N}$, J. Funct. Anal., 88 (1990), 90-117. | MR | Zbl

[BCC] I. Birindelli - I. Capuzzo Dolcetta - A. Cutrì , Liouville theorems for semilinear equations on the Heisenberg group, Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear. | fulltext mini-dml | MR | Zbl

[BK] H. Brezis - T. Kato , Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl., 58 (1979), 137-151. | MR | Zbl

[BN] H. Brezis - L. Nirenberg , Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477. | MR | Zbl

[B] N. Burger , Espace des fonctions à variation moyenne bornée sur un espace de nature homogène, C. R. Acad. Sci. Paris, Serie A, 286 (1978), 139-142. | MR | Zbl

[C] G. Citti , Semilinear Dirichlet problem involving critical exponent for the Kohn Laplacian, Ann. Mat. Pura Appl., 169 (1995), 375-392. | MR | Zbl

[CGL] G. Citti - N. Garofalo - E. Lanconelli , Harnack's inequality for sum of squares of vector fields plus a potential, Amer. J. Math., 115 (1993), 699-734. | MR | Zbl

[Cy] J. Cygan , Wiener's test for the Brownian motion on the Heisenberg group, Colloquium Math., 39 (1978), 367-373. | MR | Zbl

[EL] M. J. Esteban - P.-L. Lions , Existence and non-existence results for semilinear elliptic problems in unbounded domains, Proc. Royal Soc. Edinburgh, 93A (1982), 1-14. | MR | Zbl

[Fe] H. Federer , Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, 153, Springer, New York (1969). | MR | Zbl

[F] G. B. Folland , A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc., 79 (1973), 373-376. | fulltext mini-dml | MR | Zbl

[FS] G. B. Folland - E. M. Stein , Estimates for the $\bar{\partial}_{b}$ complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., 27 (1974), 429-522. | MR | Zbl

[GL1] N. Garofalo - E. Lanconelli , Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation, Ann. Inst. Fourier Grenoble, 40 (1990), 313-356. | fulltext mini-dml | MR | Zbl

[GL2] N. Garofalo - E. Lanconelli , Existence and nonexistence results for semilinear equations on the Heisenberg group, Indiana Univ. Math. J., 41 (1992), 71-98. | MR | Zbl

[GT] D. Gilbarg - N. S. Trudinger , Elliptic partial differential equations of second order, Die Grundlehren der mathematischen Wissenschaften, 224, Springer-Verlag, New York (1977). | MR | Zbl

[J] D. S. Jerison , The Dirichlet problem for the Kohn Laplacian on the Heisenberg group I, J. Funct. Anal., 43 (1981), 97-142. | MR | Zbl

[JL1] D. Jerison - J. M. Lee , Intrinsic CR normal coordinates and the CR Yamabe problem, J. Differential Geom., 29 (1989), 303-343. | fulltext mini-dml | MR | Zbl

[JL2] D. Jerison - J. M. Lee , Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem, J. Amer. Math. Soc., 1 (1988), 1-13. | MR | Zbl

[KN] J. J. Kohn - L. Nirenberg , Non-coercive boundary value problems, Comm. Pure Appl. Math., 18 (1965), 443-492. | MR | Zbl

[L] P-L. Lions , The concentration-compactness principle in the calculus of variations. The limit case, Rev. Mat. Iberoamericana, 1 (1985), n. 1, 145-201, n. 2, 45-121. | MR | Zbl

[T] G. Talenti , Best constant in Sobolev inequality, Ann. Mat. Pura Appl., Serie IV, 110 (1976), 353-372. | MR | Zbl

[U] F. Uguzzoni , A Liouville-type theorem on halfspaces for the Kohn Laplacian, Proc. Amer. Math. Soc., to appear. | MR | Zbl