Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_1998_8_1B_1_a5, author = {Struwe, Michael and Tarantello, Gabriella}, title = {On multivortex solutions in {Chern-Simons} gauge theory}, journal = {Bollettino della Unione matematica italiana}, pages = {109--121}, publisher = {mathdoc}, volume = {Ser. 8, 1B}, number = {1}, year = {1998}, zbl = {0912.58046}, mrnumber = {1132783}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_1_a5/} }
TY - JOUR AU - Struwe, Michael AU - Tarantello, Gabriella TI - On multivortex solutions in Chern-Simons gauge theory JO - Bollettino della Unione matematica italiana PY - 1998 SP - 109 EP - 121 VL - 1B IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_1_a5/ LA - en ID - BUMI_1998_8_1B_1_a5 ER -
Struwe, Michael; Tarantello, Gabriella. On multivortex solutions in Chern-Simons gauge theory. Bollettino della Unione matematica italiana, Série 8, 1B (1998) no. 1, pp. 109-121. http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_1_a5/
[1] Uniform estimates and blow-up behavior for solutions of $-\Delta u = V(x) e^u$ in two dimensions, Comm. P.D.E., 16 (1991), 1223-1253. | MR | Zbl
- ,[2] A special class of stationary flows for two-dimensional Euler equations, a statistical mechanics description, Comm. Math. Phys., 143 (1992), 501-525. | fulltext mini-dml | MR | Zbl
- - - ,[3] A special class of stationary flows for two-dimensional Euler equations, a statistical mechanics description, part II, Comm. Math. Phys., 174 (1995), 229-260. | fulltext mini-dml | MR | Zbl
- - - ,[4] Self-dual Chern Simons Theories, Lecture Notes in Physics, New Series M, 36, Springer, New York (1996). | Zbl
,[5] Multivortex solutions of the Abelian Chern Simons theory, Phys. Rev. Lett., 64 (1990), 2230-2233. | MR | Zbl
- - ,[6] Selfdual Chern Simons vortices, Phys. Rev. Lett., 64 (1990), 2234-2237. | MR | Zbl
- ,[7] Statistical Mechanics of classical particles with logarithmic interaction, Comm. Pure Appl. Math., 46 (1993), 27-56. | MR | Zbl
,[8] Blow-up analysis for solutions of $-\Delta u = Ve^u$ in dimension two, Ind. Univ. Math. J., 43 (1994), 1255-1270. | MR | Zbl
- ,[9] A sharp form of an inequality by N. Trudinger, Ind. Univ. Math. J., 20 (1971), 1077-1091. | MR | Zbl
,[10]
- , in preparation.[11] The existence of surfaces of constant mean curvature with free boundaries, Acta Math., 160 (1988), 19-64. | MR | Zbl
,[12] Critical points of embeddings of $H^{1, 2}$ into Orlicz spaces, Ann. Inst. H. Poincaré, Analyse Nonlin., 5 (1988), 425-464. | fulltext mini-dml | MR | Zbl
,[13] Global analysis for two dimensional elliptic eigenvalue problems with exponential nonlinearities, Ann. Inst. H. Poincaré, Analyse Nonlin., 9 (1992), 367-398. | fulltext mini-dml | MR | Zbl
,[14] Multiple condensate solutions for the Chern-Simons-Higgs theory, J. Math. Phys., 37 (8) (1996), 3769-3796. | MR | Zbl
,[15] Arbitrary N-vortex solutions to the first order Ginzburg-Landau equation, Comm. Math. Phys., 72 (1980), 277-292. | fulltext mini-dml | MR | Zbl
,