On multivortex solutions in Chern-Simons gauge theory
Bollettino della Unione matematica italiana, Série 8, 1B (1998) no. 1, pp. 109-121.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Motivati dall'analisi asintotica dei vortici nella teoria di Chern-Simons-Higgs, si studia l'equazione $$ - \Delta u= \lambda\left(\frac{e^{u}}{\int_{\Omega}e^{u}\,dx}-\frac{1}{|\Omega|}\right), \quad u\in H^{1}(\Omega) $$ dove $\Omega=\mathbb{R}^{2}/\mathbb{Z}^{2}$ é il toro piatto bidimensionale. In contrasto con l'analogo problema di Dirichlet, si dimostra che per $\lambda\in (8\pi, 4\pi^{2})$ l'equazione ammette una soluzione non banale. Tale soluzione cattura il carattere bidimensionale dell'equazione, nel senso che, per tali valori di $\lambda$, l'equazione non può ammettere soluzioni (periodiche) non banali dipendenti da una sola variabile (vedi [10]).
@article{BUMI_1998_8_1B_1_a5,
     author = {Struwe, Michael and Tarantello, Gabriella},
     title = {On multivortex solutions in {Chern-Simons} gauge theory},
     journal = {Bollettino della Unione matematica italiana},
     pages = {109--121},
     publisher = {mathdoc},
     volume = {Ser. 8, 1B},
     number = {1},
     year = {1998},
     zbl = {0912.58046},
     mrnumber = {1132783},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_1_a5/}
}
TY  - JOUR
AU  - Struwe, Michael
AU  - Tarantello, Gabriella
TI  - On multivortex solutions in Chern-Simons gauge theory
JO  - Bollettino della Unione matematica italiana
PY  - 1998
SP  - 109
EP  - 121
VL  - 1B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_1_a5/
LA  - en
ID  - BUMI_1998_8_1B_1_a5
ER  - 
%0 Journal Article
%A Struwe, Michael
%A Tarantello, Gabriella
%T On multivortex solutions in Chern-Simons gauge theory
%J Bollettino della Unione matematica italiana
%D 1998
%P 109-121
%V 1B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_1_a5/
%G en
%F BUMI_1998_8_1B_1_a5
Struwe, Michael; Tarantello, Gabriella. On multivortex solutions in Chern-Simons gauge theory. Bollettino della Unione matematica italiana, Série 8, 1B (1998) no. 1, pp. 109-121. http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_1_a5/

[1] H. Brezis - F. Merle , Uniform estimates and blow-up behavior for solutions of $-\Delta u = V(x) e^u$ in two dimensions, Comm. P.D.E., 16 (1991), 1223-1253. | MR | Zbl

[2] E. Caglioti - P. L. Lions - C. Marchioro - M. Pulvirenti , A special class of stationary flows for two-dimensional Euler equations, a statistical mechanics description, Comm. Math. Phys., 143 (1992), 501-525. | fulltext mini-dml | MR | Zbl

[3] E. Caglioti - P. L. Lions - C. Marchioro - M. Pulvirenti , A special class of stationary flows for two-dimensional Euler equations, a statistical mechanics description, part II, Comm. Math. Phys., 174 (1995), 229-260. | fulltext mini-dml | MR | Zbl

[4] G. Dunne , Self-dual Chern Simons Theories, Lecture Notes in Physics, New Series M, 36, Springer, New York (1996). | Zbl

[5] J. Hong - Y. Kim - P. Y. Pac , Multivortex solutions of the Abelian Chern Simons theory, Phys. Rev. Lett., 64 (1990), 2230-2233. | MR | Zbl

[6] R. Jackiw - E. J. Weinberg , Selfdual Chern Simons vortices, Phys. Rev. Lett., 64 (1990), 2234-2237. | MR | Zbl

[7] M. K. H. Kiessling , Statistical Mechanics of classical particles with logarithmic interaction, Comm. Pure Appl. Math., 46 (1993), 27-56. | MR | Zbl

[8] Y. Li - I. Shafrir , Blow-up analysis for solutions of $-\Delta u = Ve^u$ in dimension two, Ind. Univ. Math. J., 43 (1994), 1255-1270. | MR | Zbl

[9] J. Moser , A sharp form of an inequality by N. Trudinger, Ind. Univ. Math. J., 20 (1971), 1077-1091. | MR | Zbl

[10] T. Ricciardi - G. Tarantello , in preparation.

[11] M. Struwe , The existence of surfaces of constant mean curvature with free boundaries, Acta Math., 160 (1988), 19-64. | MR | Zbl

[12] M. Struwe , Critical points of embeddings of $H^{1, 2}$ into Orlicz spaces, Ann. Inst. H. Poincaré, Analyse Nonlin., 5 (1988), 425-464. | fulltext mini-dml | MR | Zbl

[13] T. Suzuki , Global analysis for two dimensional elliptic eigenvalue problems with exponential nonlinearities, Ann. Inst. H. Poincaré, Analyse Nonlin., 9 (1992), 367-398. | fulltext mini-dml | MR | Zbl

[14] G. Tarantello , Multiple condensate solutions for the Chern-Simons-Higgs theory, J. Math. Phys., 37 (8) (1996), 3769-3796. | MR | Zbl

[15] C. H. Taubes , Arbitrary N-vortex solutions to the first order Ginzburg-Landau equation, Comm. Math. Phys., 72 (1980), 277-292. | fulltext mini-dml | MR | Zbl