Stefan problems with a concentrated capacity
Bollettino della Unione matematica italiana, Série 8, 1B (1998) no. 1, pp. 71-81.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Vengono brevemente studiati i problemi di Stefan su «capacità concentrate»,seguendo l'approccio recentemente introdotto di G. Savaré e A. Visintin.
@article{BUMI_1998_8_1B_1_a3,
     author = {Magenes, Enrico},
     title = {Stefan problems with a concentrated capacity},
     journal = {Bollettino della Unione matematica italiana},
     pages = {71--81},
     publisher = {mathdoc},
     volume = {Ser. 8, 1B},
     number = {1},
     year = {1998},
     zbl = {0904.35103},
     mrnumber = {1117356},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_1_a3/}
}
TY  - JOUR
AU  - Magenes, Enrico
TI  - Stefan problems with a concentrated capacity
JO  - Bollettino della Unione matematica italiana
PY  - 1998
SP  - 71
EP  - 81
VL  - 1B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_1_a3/
LA  - en
ID  - BUMI_1998_8_1B_1_a3
ER  - 
%0 Journal Article
%A Magenes, Enrico
%T Stefan problems with a concentrated capacity
%J Bollettino della Unione matematica italiana
%D 1998
%P 71-81
%V 1B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_1_a3/
%G en
%F BUMI_1998_8_1B_1_a3
Magenes, Enrico. Stefan problems with a concentrated capacity. Bollettino della Unione matematica italiana, Série 8, 1B (1998) no. 1, pp. 71-81. http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_1_a3/

[1] D. Andreucci , Existence and uniqueness of solutions to a concentrated capacity problem with change of phase, Europ. J. Appl. Math., 1 (1990), 330-351. | MR | Zbl

[2] H. Brezis , Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, Proc. Symp. by the Mathematics Research Center, Madison, Wisconsin, Academic Press, New York (1971), pp. 101-156. | MR | Zbl

[3] H. Brezis , Opérateurs maximaux monotones et sémi-groupes de contractions dans les espaces de Hilbert, North-Holland; Amsterdam (1973). | Zbl

[4] M. C. Delfour - J. P. Zolésio , Shape analysis via oriented distance functions, J. Funct. Anal., 86 (1989), 129-201. | MR | Zbl

[5] A. Fasano - M. Primicerio - L. Rubinstein , A model problem for heat conduction with a free boundary in a concentrated capacity, J. Inst. Math. Appl., 26 (1980), 327-347. | MR | Zbl

[6] D. Gilbarg - N. S. Trudinger , Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin (1983). | MR | Zbl

[7] J. L. Lions - E. Magenes , Non Homogeneous Boundary Value Problems and Applications I, II, Springer-Verlag, Berlin (1972). | Zbl

[8] E. Magenes , On a Stefan problem on a boundary of a domain, in M. MIRANDA (ed.), Partial Differential Equations and Related Subjects, Longman Scient. Techn. (1992), pp. 209-226. | MR | Zbl

[9] E. Magenes , Some new results on a Stefan problem in a concentrated capacity, Rend. Acc. Lincei, Mat. Appl., s. 9, v. 3 (1992), 23-34. | MR | Zbl

[10] E. Magenes , The Stefan problem in a concentrated capacity, in: P. E. RICCI (ed.), Atti Simp. Int. «Problemi attuali dell'Analisi e della Fisica Matematica»; Dip. di Matematica, Univ. «La Sapienza», Roma (1993), pp. 155-182. | Zbl

[11] E. Magenes , Regularity and approximation properties for the solution of a Stefan problem in a concentrated capacity, Proc. Int. Workshop on Variational Methods, Nonlinear Analysis and Differential Equations, E.C.I.G., Genova (1994), pp. 88-106.

[12] E. Magenese , On a Stefan problem in a concentrated capacity, in: P. MARCELLINI, G. TALENTI, E. VESENTINI (eds.), P.D.E. and Applications, Marcel Dekker, Inc. (1996), pp. 237-253. | MR | Zbl

[13] E. Magenes , Stefan problems in a concentrated capacity, Adv. Math. Comp. Appl., Proc. AMCA 95, N.C.C. Pubbl., Novosibirsk (1996), pp. 82-90. | MR | Zbl

[14] U. Mosco , Convergence of convex sets and of solutions of variational inequalitites, Adv. Math., 3 (1969), pp. 510-585. | MR | Zbl

[15] U. Mosco , On the continuity of the Young-Fenchel transformation, J. Math. Anal. Appl., 35 (1971), pp. 518-535. | MR | Zbl

[16] L. Rubinstein , Temperature Fields in Oil Layers, Nedra, Moscow (1972). | MR

[17] L. Rubinstein , The Stefan problem: Comments on its present state, J. Inst. Math. Appl., 24 (1979), 259-277. | MR | Zbl

[18] L. Rubinstein - H. Geiman - M. Shachaf , Heat transfer with a free boundary moving within a concentrated capacity, I.M.A. J. Appl. Math., 28 (1982), 131-147. | MR | Zbl

[19] G. Savaré - A. Visintin , Variational convergence of nonlinear diffusion equations: applications to concentrated capacity problems with change of phase, Rend. Acc. Lincei, Mat. Appl., s. 9, v. 8 (1997), 49-89. | MR | Zbl

[20] M. Shillor , Existence and continuity of a weak solution to the problem of a free boundary in a concentrated capcity, Proc. Roy. Soc. Edinburgh, Sect. A, 100 (1985), 271-280. | MR | Zbl

[21] A. N. Tichonov , On the boundary conditions containing derivatives of the order greater than the order of the equation, Mat. Sbornik, 26 (67) (1950), 35-56. | MR

[22] A. Visinitin , Models of Phase Transitions, Progress in Nonlinear Diff. Equat. and their Appl., Birkhäuser (1996). | MR | Zbl

[23] A. Visintin , Introduction to the models of phase transitions, this issue, p. 1. | fulltext mini-dml | MR | Zbl