Algoritmi di ottimizzazione globale
Bollettino della Unione matematica italiana, Série 8, 1A (1998) no. 1S, pp. 189-192.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

@article{BUMI_1998_8_1A_1S_a44,
     author = {Locatelli, Marco},
     title = {Algoritmi di ottimizzazione globale},
     journal = {Bollettino della Unione matematica italiana},
     pages = {189--192},
     publisher = {mathdoc},
     volume = {Ser. 8, 1A},
     number = {1S},
     year = {1998},
     zbl = {Zbl 0928.90088},
     mrnumber = {1188544},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_1998_8_1A_1S_a44/}
}
TY  - JOUR
AU  - Locatelli, Marco
TI  - Algoritmi di ottimizzazione globale
JO  - Bollettino della Unione matematica italiana
PY  - 1998
SP  - 189
EP  - 192
VL  - 1A
IS  - 1S
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_1998_8_1A_1S_a44/
LA  - it
ID  - BUMI_1998_8_1A_1S_a44
ER  - 
%0 Journal Article
%A Locatelli, Marco
%T Algoritmi di ottimizzazione globale
%J Bollettino della Unione matematica italiana
%D 1998
%P 189-192
%V 1A
%N 1S
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_1998_8_1A_1S_a44/
%G it
%F BUMI_1998_8_1A_1S_a44
Locatelli, Marco. Algoritmi di ottimizzazione globale. Bollettino della Unione matematica italiana, Série 8, 1A (1998) no. 1S, pp. 189-192. http://geodesic.mathdoc.fr/item/BUMI_1998_8_1A_1S_a44/

[1] Belisle C.J.P., Convergence Theorems for a Class of Simulateci Annealing Algorithms on \( \mathcal{R}^{d} \), J. Appl. Prob., 29 (1992), 885-892. | MR | Zbl

[2] Cerny V., Thermodynamical Approach to the Travelling Salesman Problem: An Efficient Simulation Algorithm, J. Optim. Theory Appl., 45 (1985), 41-51. | DOI | MR | Zbl

[3] Gelfand S.B. e Mitter S.K., Metropolis-type annealing algorithms for global optimization in \( \mathcal{R}^{d} \), SIAM J. of Control and Optimization, 31, No. 1 (1993), 111-131. | DOI | MR | Zbl

[4] Hajek B., Cooling schedules for optimal annealing, Mathematics of Operations Research, 13 (1988), 311-329. | DOI | MR | Zbl

[5] Horst R. e Tuy H., Global optimization: deterministic approaches, (second edition), Springer-Verlag (1992). | MR | Zbl

[6] HORST R. e PARDALOS P. (editori), Handbook of global optimization, Kluwer Academic Publishers (1995). | MR | Zbl

[7] Kirkpatrick S., Gelatt C.D. e Vecchi M.P., Optimization by Simulated Annealing, Science, 220 (1983), 671-680. | DOI | MR | Zbl

[8] Kushner H., A versatile stochastic model of a function of unknown and time varying form, Journal of Math. Anal. Appl., 5 (1962), 150-167. | MR | Zbl

[9] Metropolis N., Rosenbluth A.W., Rosenbluth M.N. e Teller A.H., Equation of State Calculations by Fast Computer Machines, J. Chem. Phys., 21 (1953), 1087.

[10] Pardalos P.M. e Schnitger G., Checking local optimality in constrained quadratic programming is NP-hard, Operations Research Letters, 7 (1988), 33-35. | DOI | MR | Zbl

[11] Rinnooy Kan A.H.G. e Timmer G., Stochastic global optimization methods. Part i: clustering methods, Mathematical Programming, 39 (1987), 27-56. | DOI | MR | Zbl

[12] Rinnooy Kan A.H.G. e Timmer G., Stochastic global optimization methods. Part ii: multi level methods, Mathematical Programming, 39 (1987), 57-78. | DOI | MR | Zbl

[13] Zilinskas A., One-step Bayesian method of the search for extremum of an one-di-mensional function, Cybernetics, 1 (1975), 139-144. | MR | Zbl