Some integral equations satisfied by the complete elliptic integrals of the first and second kind.
Bollettino della Unione matematica italiana, Série 3, Tome 16 (1961) no. 3, pp. 264-268.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

@article{BUMI_1961_3_16_3_a6,
     author = {Carlitz, Leonard},
     title = {Some integral equations satisfied by the complete elliptic integrals of  the first and second kind.},
     journal = {Bollettino della Unione matematica italiana},
     pages = {264--268},
     publisher = {mathdoc},
     volume = {Ser. 3, 16},
     number = {3},
     year = {1961},
     zbl = {0102.29001},
     mrnumber = {132215},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_1961_3_16_3_a6/}
}
TY  - JOUR
AU  - Carlitz, Leonard
TI  - Some integral equations satisfied by the complete elliptic integrals of  the first and second kind.
JO  - Bollettino della Unione matematica italiana
PY  - 1961
SP  - 264
EP  - 268
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_1961_3_16_3_a6/
LA  - en
ID  - BUMI_1961_3_16_3_a6
ER  - 
%0 Journal Article
%A Carlitz, Leonard
%T Some integral equations satisfied by the complete elliptic integrals of  the first and second kind.
%J Bollettino della Unione matematica italiana
%D 1961
%P 264-268
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_1961_3_16_3_a6/
%G en
%F BUMI_1961_3_16_3_a6
Carlitz, Leonard. Some integral equations satisfied by the complete elliptic integrals of  the first and second kind.. Bollettino della Unione matematica italiana, Série 3, Tome 16 (1961) no. 3, pp. 264-268. http://geodesic.mathdoc.fr/item/BUMI_1961_3_16_3_a6/

[1] G. Maximon , A generating function for the product of two Legendre polynomials, «Norske Videnskabers Selskab Forkandlinger», vol. 20 (1957), pp. 82-86. | MR | Zbl

[2] G. N. Watson , Notes on generating functions of polynomials: (3) Polynomials of Legendre and Gegenbaur «Journal of the London Mathematical Society», vol. 8(1933), pp. 289-292. | Zbl