Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_1957_3_12_3_a3, author = {Wintner, Aurel}, title = {On applications of the {Schwarzian} derivative in the real domain.}, journal = {Bollettino della Unione matematica italiana}, pages = {394--400}, publisher = {mathdoc}, volume = {Ser. 3, 12}, number = {3}, year = {1957}, zbl = {0080.06803}, mrnumber = {95318}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_1957_3_12_3_a3/} }
TY - JOUR AU - Wintner, Aurel TI - On applications of the Schwarzian derivative in the real domain. JO - Bollettino della Unione matematica italiana PY - 1957 SP - 394 EP - 400 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_1957_3_12_3_a3/ LA - en ID - BUMI_1957_3_12_3_a3 ER -
Wintner, Aurel. On applications of the Schwarzian derivative in the real domain.. Bollettino della Unione matematica italiana, Série 3, Tome 12 (1957) no. 3, pp. 394-400. http://geodesic.mathdoc.fr/item/BUMI_1957_3_12_3_a3/
[1] In the classical writings, this connection is (sometimes tacitly) combined with what eventually became DARBOUX'S criterion (involving the image of the boundary of the Gomain J) for a schlicht mapping. The above-mentioned formulation of the classical fact (recently rediscovered, and used so as to supply sufficient criteria for schlicht behavior in general, by
[2], p. 545 and pp. 49-50), when applied to the particular case of schlicht triangle functions, was generalized by FELIX KLEIN to «oscillation theorems», which deal with a self-overlapping triangle and, correspondingly, replace a recourse to DARBOUX'S criterion by what corresponds to it in case of an arbitrairy Windungssahl ; cf. [3].[2] The Schwarzian derivative and schlicht functions, «Bulletin of the American Mathematical Society», vol. 55 (1949), pp. 545-551, | fulltext mini-dml | MR | Zbl
,and Lectures on Functions of a Complex Variable», Ann. Arbor, 1955, pp. 49-60 ; cf. also pp. 214-215 and Lemma 2 and Lemma 3 (and the earlier results of G. M. GOLUSIN and M. SCHIFFER, referred to in connection with those lemrnas) in a paper of A. RÉNYI, | MR | Zbl
Univalent functions and linear differential equations, «On the geometry of conformal mapping, «Acta Scientiearum Mathematicarum» (Szeged), vol. 12 (1950), pp. 214-222. As I observed some time ago, NEHARI'S results become quite understandable (and, correspondingly, the proofs can be reduced considerably);
cf.On linear, second order differential equations in the unit circle, «Transactions of the American Mathematical Society», vol. 78 (1955), 493-495), if it is noticed that what is involved is precisely the distortion factor of the non-euclidean line element ds. | Zbl
and ,[3] Gesammelte mathematische Abhandlungen, vol. 2, pp. 551-567, or [5], pp. 211-249.
,[4] Einführung in die Theorie der Differentialgleichungen im reellen Gebiet, 1956, pp. 228-233. | MR | Zbl
,[5] Vorlesungen über die hypergeometrische Funkition, ed. 1933 | Jbk 59.0375.11 | MR | Zbl
,[6] A priori Laplace transformations of linear differential equations, «American Journal of Mathématics», vol. 71 (1949), pp. 587-594. | MR | Zbl
,[7] On the non-existence of conjugate points, ibid., vol. 73 (1951), pp. 368-380. | MR | Zbl
,