On applications of the Schwarzian derivative in the real domain.
Bollettino della Unione matematica italiana, Série 3, Tome 12 (1957) no. 3, pp. 394-400.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

@article{BUMI_1957_3_12_3_a3,
     author = {Wintner, Aurel},
     title = {On applications of the {Schwarzian} derivative in the real domain.},
     journal = {Bollettino della Unione matematica italiana},
     pages = {394--400},
     publisher = {mathdoc},
     volume = {Ser. 3, 12},
     number = {3},
     year = {1957},
     zbl = {0080.06803},
     mrnumber = {95318},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_1957_3_12_3_a3/}
}
TY  - JOUR
AU  - Wintner, Aurel
TI  - On applications of the Schwarzian derivative in the real domain.
JO  - Bollettino della Unione matematica italiana
PY  - 1957
SP  - 394
EP  - 400
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_1957_3_12_3_a3/
LA  - en
ID  - BUMI_1957_3_12_3_a3
ER  - 
%0 Journal Article
%A Wintner, Aurel
%T On applications of the Schwarzian derivative in the real domain.
%J Bollettino della Unione matematica italiana
%D 1957
%P 394-400
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_1957_3_12_3_a3/
%G en
%F BUMI_1957_3_12_3_a3
Wintner, Aurel. On applications of the Schwarzian derivative in the real domain.. Bollettino della Unione matematica italiana, Série 3, Tome 12 (1957) no. 3, pp. 394-400. http://geodesic.mathdoc.fr/item/BUMI_1957_3_12_3_a3/

[1] In the classical writings, this connection is (sometimes tacitly) combined with what eventually became DARBOUX'S criterion (involving the image of the boundary of the Gomain J) for a schlicht mapping. The above-mentioned formulation of the classical fact (recently rediscovered, and used so as to supply sufficient criteria for schlicht behavior in general, by Nehari [2], p. 545 and pp. 49-50), when applied to the particular case of schlicht triangle functions, was generalized by FELIX KLEIN to «oscillation theorems», which deal with a self-overlapping triangle and, correspondingly, replace a recourse to DARBOUX'S criterion by what corresponds to it in case of an arbitrairy Windungssahl ; cf. [3].

[2] Z. Nehari , The Schwarzian derivative and schlicht functions, «Bulletin of the American Mathematical Society», vol. 55 (1949), pp. 545-551, | fulltext mini-dml | MR | Zbl

and Z. Nehari Univalent functions and linear differential equations, «Lectures on Functions of a Complex Variable», Ann. Arbor, 1955, pp. 49-60 ; cf. also pp. 214-215 and Lemma 2 and Lemma 3 (and the earlier results of G. M. GOLUSIN and M. SCHIFFER, referred to in connection with those lemrnas) in a paper of A. RÉNYI, | MR | Zbl

Z. Nehari On the geometry of conformal mapping, «Acta Scientiearum Mathematicarum» (Szeged), vol. 12 (1950), pp. 214-222. As I observed some time ago, NEHARI'S results become quite understandable (and, correspondingly, the proofs can be reduced considerably);

cf. P. Hartman and A. Wintner , On linear, second order differential equations in the unit circle, «Transactions of the American Mathematical Society», vol. 78 (1955), 493-495), if it is noticed that what is involved is precisely the distortion factor of the non-euclidean line element ds. | Zbl

[3] F. Klein , Gesammelte mathematische Abhandlungen, vol. 2, pp. 551-567, or [5], pp. 211-249.

[4] L. Bieberbach , Einführung in die Theorie der Differentialgleichungen im reellen Gebiet, 1956, pp. 228-233. | MR | Zbl

[5] F. Klein , Vorlesungen über die hypergeometrische Funkition, ed. 1933 | Jbk 59.0375.11 | MR | Zbl

[6] A. Wintner , A priori Laplace transformations of linear differential equations, «American Journal of Mathématics», vol. 71 (1949), pp. 587-594. | MR | Zbl

[7] A. Wintner , On the non-existence of conjugate points, ibid., vol. 73 (1951), pp. 368-380. | MR | Zbl