SUP-Hesitant Fuzzy Interior Ideals in \(\Gamma\)-Semigroups
Bulletin of the Section of Logic, Tome 53 (2024) no. 2, pp. 155-171.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we defined the concept 𝒮𝒰𝒫-hesitant fuzzy interior ideals in Γ-semigroups, which is generalized of hesitant fuzzy interior ideals in Γ-semigroups. Additionally,  we study fundamental properties of 𝒮𝒰𝒫-hesitant fuzzy interior ideals in Γ-semigroups. Finally, we investigate characterized properties of those.
Keywords: SUP-hesitant fuzzy interior ideal, hesitant fuzzy interior ideal, interval valued fuzzy interior ideal
@article{BSL_2024_53_2_a1,
     author = {Khamrot, Pannawit and Gaketem, Thiti},
     title = {SUP-Hesitant {Fuzzy} {Interior} {Ideals} in {\(\Gamma\)-Semigroups}},
     journal = {Bulletin of the Section of Logic},
     pages = {155--171},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2024_53_2_a1/}
}
TY  - JOUR
AU  - Khamrot, Pannawit
AU  - Gaketem, Thiti
TI  - SUP-Hesitant Fuzzy Interior Ideals in \(\Gamma\)-Semigroups
JO  - Bulletin of the Section of Logic
PY  - 2024
SP  - 155
EP  - 171
VL  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2024_53_2_a1/
LA  - en
ID  - BSL_2024_53_2_a1
ER  - 
%0 Journal Article
%A Khamrot, Pannawit
%A Gaketem, Thiti
%T SUP-Hesitant Fuzzy Interior Ideals in \(\Gamma\)-Semigroups
%J Bulletin of the Section of Logic
%D 2024
%P 155-171
%V 53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2024_53_2_a1/
%G en
%F BSL_2024_53_2_a1
Khamrot, Pannawit; Gaketem, Thiti. SUP-Hesitant Fuzzy Interior Ideals in \(\Gamma\)-Semigroups. Bulletin of the Section of Logic, Tome 53 (2024) no. 2, pp. 155-171. http://geodesic.mathdoc.fr/item/BSL_2024_53_2_a1/

[1] M. Y. Abbasi, A. Talee, S. Khan, K. Hila, A hesitant fuzzy set approach to ideal theory in Γ-semigroups, Advance in Fuzzy Systems, vol. 2018 (Article ID 5738024) (2018), pp. 1–6 | DOI

[2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol. 20(2) (1986), pp. 87–96 | DOI

[3] S. Bashir, A. Sarwar, Characterizations of Γ-semigroups by the properties of their interval valued T-fuzzy ideals, Annals of Fuzzy Mathematics and Informatics, vol. 9(3) (2015), pp. 441–461, URL: http://www.afmi.or.kr/articles_in_%20press/2014-10/AFMI-H-140616R3/afmi.pdf

[4] R. Chinram, On quasi-gamma-ideals in Γ-semigroups, Science Asia, vol. 32(4) (2006), pp. 351–353 | DOI

[5] R. Chinram, A note on quasi-ideals in Γ-semirings, International Mathematical Forum, vol. 3(25–28) (2008), pp. 1253–1259, URL: https://www.m-hikari.com/ijcms-password2008/33-36-2008/chinramIJCMS33-36-2008.pdf

[6] A. Dey, T. Senapati, G. C. M. Pal, A novel approach to hesitant multifuzzy soft set based decision-making, AIMS Mathematics, vol. 5 (2020), pp. 1985–2008 | DOI

[7] T. K. Dutta, N. C. Adhikari, On Γ-semigroup with the right and left unities, Soochow Journal of Mathematics, vol. 19(4) (1993), pp. 461–474.

[8] T. K. Dutta, N. C. Adhikari, On prime radical of Γ-semigroup, Bulletin of the Calcutta Mathematical Society, vol. 86(5) (1994), pp. 437–444.

[9] H. Harizavi, Y. B. Jun, SUP-hesitant fuzzy quasi-associative ideals of BCI-algebras, Filomat, vol. 34 (2020), pp. 4189–4197 | DOI

[10] K. Hila, On regular, semiprime and quasi-reflexive Γ-semigroup and minimal quasi-ideals, Lobachevskii Journal of Mathematics, vol. 29(3) (2008), pp. 141–152 | DOI

[11] K. Hilla, Some results on prime radical in ordered Γ-semigroups, Mathematical Reports, vol. 16(66) (2014), pp. 253–270, URL: http://imar.ro/journals/Mathematical_Reports/Pdfs/2014/2/7.pdf

[12] U. Jittburus, P. Julatha, New generalizations of hesitant and interval-valued fuzzy ideals of semigroups, Advances in Mathematics: Scientific Journal, vol. 10 (2021), pp. 2199–2212 | DOI

[13] P. Julatha, A. Iampan, SUP-Hesitant fuzzy ideals of Γ-semigroups, Journal of Mathematics and Computer Science, vol. 26 (2022), pp. 148–161 | DOI

[14] Y. B. Jun, K. J. Lee, S.-Z. Song, Hesitant fuzzy bi-ideals in semigroups, Communications of the Korean Mathematical Society, vol. 30 (2015), pp. 143–154 | DOI

[15] J. Mordeson, D. S. Malik, N. Kuroki, Fuzzy semigroups, vol. 131 of Studies in Fuzziness and Soft Computing, Springer, Berlin–Heidelberg (2003) | DOI

[16] P. Mosrijai, A. Satirad, A. Iampan, New types of hesitant fuzzy sets on UP-algebras, Mathematica Moravica, vol. 22 (2018), pp. 29–39 | DOI

[17] G. Muhiuddin, Y. B. Jun, SUP-hesitant fuzzy subalgebras and its translations and extensions, Annals of Communications in Mathematics, vol. 2 (2019), pp. 48–56.

[18] U. Mustafa, M. A. Ozturk, Y. B. Jun, Intuitionistic fuzzy sets in Γ-semigroups, Bulletin of the Korean Mathematical Society, vol. 44(2) (2007), pp. 359–367 | DOI

[19] A. Narayanan, T. Manikantan, Interval-valued fuzzy ideals generated by an interval-valued fuzzy subset in semigroups, Journal of Applied Mathematics and Computing, vol. 20(1–2) (2006), pp. 455–464 | DOI

[20] M. K. Sen, N. K. Saha, On Γ-semigroup-I, Bulletin of the Calcutta Mathematical Society, vol. 78(3) (1986), pp. 180–186.

[21] M. K. Sen, N. K. Saha, Orthodox Γ-semigroups, International Journal of Mathematics and Mathematical Sciences, vol. 13(3) (1990), pp. 527–534 | DOI

[22] M. Siripitukdet, A. Iampan, On the ideal extensions in Γ-semigroups, Kyungpook Mathematical Journal, vol. 48(4) (2008), pp. 585–591, URL: https://kmj.knu.ac.kr/journal/download_pdf.php?spage=585&volume=48&number=4

[23] M. Siripitukdet, A. Iampan, On the least (ordered) semilattice congruence in ordered Γ-semigroups, Thai Journal of Mathematics, vol. 4(2) (2012), pp. 403–415, URL: https://thaijmath2.in.cmu.ac.th/index.php/thaijmath/article/view/60

[24] M. Siripitukdet, P. Julatha, The greatest subgroup of a semigroup in Γ-semigroups, Lobachevskii Journal of Mathematics, vol. 33(2) (2012), pp. 158–164 | DOI

[25] V. Torra, Hesitant fuzzy sets, International Journal of Intelligent Systems, vol. 25 (2010), pp. 529–539 | DOI

[26] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, Information and Control, vol. 8 (1975), pp. 199–249 | DOI

[27] L. A. Zadeh, Fuzzy sets, Information and Control, vol. 8 (1986), pp. 338–353 | DOI