Linear Abelian Modal Logic
Bulletin of the Section of Logic, Tome 53 (2024) no. 1, pp. 1-28.

Voir la notice de l'article provenant de la source Library of Science

A many-valued modal logic, called linear abelian modal logic 𝐋𝐊(𝐀) is introduced as an extension of the abelian modal logic 𝐊(𝐀). Abelian modal logic 𝐊(𝐀) is the minimal modal extension of the logic of lattice-ordered abelian groups. The logic 𝐋𝐊(𝐀) is axiomatized by extending 𝐊(𝐀) with the modal axiom schemas (φ∨ψ)→(φ∨ψ) and (φ∧ψ)→(φ∧ψ). Completeness theorem with respect to algebraic semantics and a hypersequent calculus admitting cut-elimination are established. Finally, the correspondence between hypersequent calculi and axiomatization is investigated.
Keywords: many-valued logic, modal logic, abelian logic, hypersequent calculus, cut-elimination
@article{BSL_2024_53_1_a0,
     author = {Mohammadi, Hamzeh},
     title = {Linear {Abelian} {Modal} {Logic}},
     journal = {Bulletin of the Section of Logic},
     pages = {1--28},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2024_53_1_a0/}
}
TY  - JOUR
AU  - Mohammadi, Hamzeh
TI  - Linear Abelian Modal Logic
JO  - Bulletin of the Section of Logic
PY  - 2024
SP  - 1
EP  - 28
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2024_53_1_a0/
LA  - en
ID  - BSL_2024_53_1_a0
ER  - 
%0 Journal Article
%A Mohammadi, Hamzeh
%T Linear Abelian Modal Logic
%J Bulletin of the Section of Logic
%D 2024
%P 1-28
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2024_53_1_a0/
%G en
%F BSL_2024_53_1_a0
Mohammadi, Hamzeh. Linear Abelian Modal Logic. Bulletin of the Section of Logic, Tome 53 (2024) no. 1, pp. 1-28. http://geodesic.mathdoc.fr/item/BSL_2024_53_1_a0/

[1] A. Avron, Hypersequents, logical consequence and intermediate logics for concurrency, Annals of Mathematics and Artificial Intelligence, vol. 4(3) (1991), pp. 225–248 | DOI

[2] F. Baader, S. Borgwardt, R. Penaloza, Decidability and complexity of fuzzy description logics, KI-Künstliche Intelligenz, vol. 31(1) (2017), pp. 85–90 | DOI

[3] S. Baratella, Continuous propositional modal logic, Journal of Applied Non-Classical Logics, vol. 28(4) (2018), pp. 297–312 | DOI

[4] E. Casari, Comparative logics and Abelian l-groups, [in:] Studies in Logic and the Foundations of Mathematics, vol. 127, Elsevier (1989), pp. 161–190 | DOI

[5] A. Ciabattoni, G. Metcalfe, F. Montagna, Adding modalities to MTL and its extensions, [in:] Proceedings of the Linz Symposium, vol. 2005, Citeseer (2005).

[6] A. Ciabattoni, G. Metcalfe, F. Montagna, Algebraic and proof-theoretic characterizations of truth stressers for MTL and its extensions, Fuzzy Sets and Systems, vol. 161(3) (2010), pp. 369–389 | DOI

[7] P. Cintula, Weakly implicative (fuzzy) logics I: Basic properties, Archive for Mathematical Logic, vol. 45(6) (2006), pp. 673–704 | DOI

[8] P. Cintula, C. Noguera, A general framework for mathematical fuzzy logic, [in:] P. Cintula, P. Hajek, C. Noguera (eds.), Handbook of Mathematical Fuzzy Logic, vol. 1, College publications, London (2011), pp. 103–207.

[9] D. Diaconescu, G. Georgescu, Tense operators on MV-algebras and Łukasiewicz-Moisil algebras, Fundamenta Informaticae, vol. 81(4) (2007), pp. 379–408.

[10] D. Diaconescu, G. Metcalfe, L. Schnüriger, A Real-Valued Modal Logic, Logical Methods in Computer Science, vol. Volume 14, Issue 1 (2018) | DOI

[11] T. Flaminio, L. Godo, E. Marchioni, Logics for belief functions on MV-algebras, International Journal of Approximate Reasoning, vol. 54(4) (2013), pp. 491–512 | DOI

[12] T. Flaminio, F. Montagna, MV-algebras with internal states and probabilistic fuzzy logics, International Journal of Approximate Reasoning, vol. 50(1) (2009), pp. 138–152 | DOI

[13] L. Godo, P. Hájek, F. Esteva, A fuzzy modal logic for belief functions, Fundamenta Informaticae, vol. 57(2-4) (2003), pp. 127–146.

[14] L. Godo, R. O. Rodrı́guez, A fuzzy modal logic for similarity reasoning, [in:] G. Chen, M. Ying, K. Cai (eds.), Fuzzy Logic and Soft Computing. The International Series on Asian Studies in Computer and Information Science, Springer, Boston, MA (1999), pp. 33–48 | DOI

[15] P. Hájek, Making fuzzy description logic more general, Fuzzy Sets and Systems, vol. 154(1) (2005), pp. 1–15 | DOI

[16] P. Hájek, D. Harmancová, R. Verbrugge, A qualitative fuzzy possibilistic logic, International Journal of Approximate Reasoning, vol. 12(1) (1995), pp. 1–19 | DOI

[17] G. Metcalfe, N. Olivetti, D. Gabbay, Sequent and hypersequent calculi for abelian and Łukasiewicz logics, ACM Transactions on Computational Logic (TOCL), vol. 6(3) (2005), pp. 578–613 | DOI

[18] G. Metcalfe, N. Olivetti, D. M. Gabbay, Proof theory for fuzzy logics, vol. 36 of Applied Logic Series, Springer, Dordrecht (2008) | DOI

[19] G. Metcalfe, O. Tuyt, A Monadic Logic of Ordered Abelian Groups, [in:] N. Olivetti, R. Verbrugge, S. Negri, G. Sandu (eds.), Advances in Modal Logic 13, College Publications, London (2020), pp. 441–457.

[20] R. K. Meyer, J. K. Slaney, Abelian Logic (From A to Z), [in:] G. Priest, R. Routley, J. Norman (eds.), Paracoconsistent Logic, Philosophia Verlag, Munich (1989).

[21] M. Mio, R. Mardare, R. Furber, Probabilistic logics based on Riesz spaces, Logical Methods in Computer Science, vol. 16 (2020) | DOI

[22] M. Mio, A. Simpson, Łukasiewicz μ-calculus, Fundamenta Informaticae, vol. 150(3–4) (2017), pp. 317–346 | DOI

[23] G. Pottinger, Uniform, cut-free formulations of T, S4 and S5, Journal of Symbolic Logic, vol. 48(3) (1983), p. 900 | DOI

[24] U. Straccia, Reasoning within fuzzy description logics, Journal of Artificial Intelligence Research, vol. 14 (2001), pp. 137–166 | DOI