Voir la notice de l'article provenant de la source Library of Science
@article{BSL_2024_53_1_a0, author = {Mohammadi, Hamzeh}, title = {Linear {Abelian} {Modal} {Logic}}, journal = {Bulletin of the Section of Logic}, pages = {1--28}, publisher = {mathdoc}, volume = {53}, number = {1}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BSL_2024_53_1_a0/} }
Mohammadi, Hamzeh. Linear Abelian Modal Logic. Bulletin of the Section of Logic, Tome 53 (2024) no. 1, pp. 1-28. http://geodesic.mathdoc.fr/item/BSL_2024_53_1_a0/
[1] A. Avron, Hypersequents, logical consequence and intermediate logics for concurrency, Annals of Mathematics and Artificial Intelligence, vol. 4(3) (1991), pp. 225–248 | DOI
[2] F. Baader, S. Borgwardt, R. Penaloza, Decidability and complexity of fuzzy description logics, KI-Künstliche Intelligenz, vol. 31(1) (2017), pp. 85–90 | DOI
[3] S. Baratella, Continuous propositional modal logic, Journal of Applied Non-Classical Logics, vol. 28(4) (2018), pp. 297–312 | DOI
[4] E. Casari, Comparative logics and Abelian l-groups, [in:] Studies in Logic and the Foundations of Mathematics, vol. 127, Elsevier (1989), pp. 161–190 | DOI
[5] A. Ciabattoni, G. Metcalfe, F. Montagna, Adding modalities to MTL and its extensions, [in:] Proceedings of the Linz Symposium, vol. 2005, Citeseer (2005).
[6] A. Ciabattoni, G. Metcalfe, F. Montagna, Algebraic and proof-theoretic characterizations of truth stressers for MTL and its extensions, Fuzzy Sets and Systems, vol. 161(3) (2010), pp. 369–389 | DOI
[7] P. Cintula, Weakly implicative (fuzzy) logics I: Basic properties, Archive for Mathematical Logic, vol. 45(6) (2006), pp. 673–704 | DOI
[8] P. Cintula, C. Noguera, A general framework for mathematical fuzzy logic, [in:] P. Cintula, P. Hajek, C. Noguera (eds.), Handbook of Mathematical Fuzzy Logic, vol. 1, College publications, London (2011), pp. 103–207.
[9] D. Diaconescu, G. Georgescu, Tense operators on MV-algebras and Łukasiewicz-Moisil algebras, Fundamenta Informaticae, vol. 81(4) (2007), pp. 379–408.
[10] D. Diaconescu, G. Metcalfe, L. Schnüriger, A Real-Valued Modal Logic, Logical Methods in Computer Science, vol. Volume 14, Issue 1 (2018) | DOI
[11] T. Flaminio, L. Godo, E. Marchioni, Logics for belief functions on MV-algebras, International Journal of Approximate Reasoning, vol. 54(4) (2013), pp. 491–512 | DOI
[12] T. Flaminio, F. Montagna, MV-algebras with internal states and probabilistic fuzzy logics, International Journal of Approximate Reasoning, vol. 50(1) (2009), pp. 138–152 | DOI
[13] L. Godo, P. Hájek, F. Esteva, A fuzzy modal logic for belief functions, Fundamenta Informaticae, vol. 57(2-4) (2003), pp. 127–146.
[14] L. Godo, R. O. Rodrı́guez, A fuzzy modal logic for similarity reasoning, [in:] G. Chen, M. Ying, K. Cai (eds.), Fuzzy Logic and Soft Computing. The International Series on Asian Studies in Computer and Information Science, Springer, Boston, MA (1999), pp. 33–48 | DOI
[15] P. Hájek, Making fuzzy description logic more general, Fuzzy Sets and Systems, vol. 154(1) (2005), pp. 1–15 | DOI
[16] P. Hájek, D. Harmancová, R. Verbrugge, A qualitative fuzzy possibilistic logic, International Journal of Approximate Reasoning, vol. 12(1) (1995), pp. 1–19 | DOI
[17] G. Metcalfe, N. Olivetti, D. Gabbay, Sequent and hypersequent calculi for abelian and Łukasiewicz logics, ACM Transactions on Computational Logic (TOCL), vol. 6(3) (2005), pp. 578–613 | DOI
[18] G. Metcalfe, N. Olivetti, D. M. Gabbay, Proof theory for fuzzy logics, vol. 36 of Applied Logic Series, Springer, Dordrecht (2008) | DOI
[19] G. Metcalfe, O. Tuyt, A Monadic Logic of Ordered Abelian Groups, [in:] N. Olivetti, R. Verbrugge, S. Negri, G. Sandu (eds.), Advances in Modal Logic 13, College Publications, London (2020), pp. 441–457.
[20] R. K. Meyer, J. K. Slaney, Abelian Logic (From A to Z), [in:] G. Priest, R. Routley, J. Norman (eds.), Paracoconsistent Logic, Philosophia Verlag, Munich (1989).
[21] M. Mio, R. Mardare, R. Furber, Probabilistic logics based on Riesz spaces, Logical Methods in Computer Science, vol. 16 (2020) | DOI
[22] M. Mio, A. Simpson, Łukasiewicz μ-calculus, Fundamenta Informaticae, vol. 150(3–4) (2017), pp. 317–346 | DOI
[23] G. Pottinger, Uniform, cut-free formulations of T, S4 and S5, Journal of Symbolic Logic, vol. 48(3) (1983), p. 900 | DOI
[24] U. Straccia, Reasoning within fuzzy description logics, Journal of Artificial Intelligence Research, vol. 14 (2001), pp. 137–166 | DOI