Voir la notice de l'article provenant de la source Library of Science
@article{BSL_2023_52_4_a4, author = {Coniglio, Marcelo Esteban and de Toledo, Guilherme Vicentin}, title = {A {Category} of {Ordered} {Algebras} {Equivalent} to the {Category} of {Multialgebras}}, journal = {Bulletin of the Section of Logic}, pages = {517--550}, publisher = {mathdoc}, volume = {52}, number = {4}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BSL_2023_52_4_a4/} }
TY - JOUR AU - Coniglio, Marcelo Esteban AU - de Toledo, Guilherme Vicentin TI - A Category of Ordered Algebras Equivalent to the Category of Multialgebras JO - Bulletin of the Section of Logic PY - 2023 SP - 517 EP - 550 VL - 52 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BSL_2023_52_4_a4/ LA - en ID - BSL_2023_52_4_a4 ER -
%0 Journal Article %A Coniglio, Marcelo Esteban %A de Toledo, Guilherme Vicentin %T A Category of Ordered Algebras Equivalent to the Category of Multialgebras %J Bulletin of the Section of Logic %D 2023 %P 517-550 %V 52 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/BSL_2023_52_4_a4/ %G en %F BSL_2023_52_4_a4
Coniglio, Marcelo Esteban; de Toledo, Guilherme Vicentin. A Category of Ordered Algebras Equivalent to the Category of Multialgebras. Bulletin of the Section of Logic, Tome 52 (2023) no. 4, pp. 517-550. http://geodesic.mathdoc.fr/item/BSL_2023_52_4_a4/
[1] J. C. Abbott, Implicational algebras, Bulletin mathématique de la Société des Sciences Mathématiques de la République Socialiste de Roumanie, vol. 11(59)(1) (1967), pp. 3–23, URL: http://www.jstor.org/stable/43679502
[2] A. Avron, I. Lev, Canonical Propositional Gentzen-type Systems, [in:] R. Gore, A. Leitsch, T. Nipkow (eds.), Proceedings of the 1st International Joint Conference on Automated Reasoning (IJCAR 2001), vol. 2083 of LNAI, Springer Verlag (2001), pp. 529–544 | DOI
[3] M. Baaz, O. Lahav, A. Zamansky, A Finite-valued Semantics for Canonical Labelled Calculi, J. of Automated Reasoning, vol. 51 (2013), pp. 401–430 | DOI
[4] I. Bošnjak, R. Madarász, On power structures, Algebra and Discrete Mathematics, vol. 2003(2) (2003), pp. 14–35.
[5] C. Brink, Power structures, Algebra Universalis, vol. 30(2) (1993), pp. 177–216 | DOI
[6] R. H. Bruck, A Survey of Binary Systems, Springer Berlin Heidelberg (1971) | DOI
[7] W. A. Carnielli, M. E. Coniglio, Paraconsistent Logic: Consistency, Contradiction and Negation, vol. 40 of Logic, Epistemology, and the Unity of Science, Springer International Publishing, Cham, Switzerland (2016) | DOI
[8] J. Cı̄rulis, A first-order logic for multi-algebras, Novi Sad Journal of Mathematics, vol. 34(2) (2004), pp. 27–36.
[9] M. E. Coniglio, A. Sernadas, C. Sernadas, J. Rasga, A graph-theoretic account of logics, Journal of Logic and Computation, vol. 19 (2009), pp. 1281–1320 | DOI
[10] M. E. Coniglio, G. V. Toledo, Weakly Free Multialgebras, Bulletin of the Section of Logic, vol. 51(1) (2021), pp. 109–141, URL: https://czasopisma.uni.lodz.pl/bulletin/article/view/5680
[11] M. E. Coniglio, G. V. Toledo, A Category of Ordered Algebras Equivalent to the Category of Multialgebras, arXiv 2209.08158 [math.CT] (2022), URL: https://arxiv.org/abs/2209.08158
[12] H. B. Curry, Foundations of mathematical logic, 2nd ed., Dover Books on Mathematics, Dover Publications, Mineola, NY (1977).
[13] M. Dresher, O. Ore, Theory of Multigroups, American Journal of Mathematics, vol. 60(3) (1938), pp. 705–733 | DOI
[14] G. Hansoul, A duality for Boolean algebras with operators, Algebra Universalis, vol. 17(1) (1983), pp. 34–49 | DOI
[15] F. Marty, Sur une generalization de la notion de groupe, [in:] Comptes rendus du huitième Congrès des mathématiciens scandinaves tenu à Stockholm 14–18 août 1934 (1935), pp. 45–49.
[16] A. Monteiro, Cours sur les algebrés de Hilbert et de Tarski, Instituto de Matemática, Universidad Nacional del Sur, Bahía Blanca, Argentina (1960).
[17] A. Monteiro, L. Iturrioz, Les algebrés de Tarski avec un nombre fini de générateurs libres, 1965. A. Monteiro: Unpublished papers I. Notas de Lógica Matemática, 40, Universidad Nacional del Sur, Instituto de Matemática, Bahía Blanca, Argentina. (1996).
[18] F. M. Nolan, Multi algebras & related structures, Ph.D. thesis, University of Canterbury, Christchurch, New Zealand (1979), URL: http://dx.doi.org/10.26021/2302
[19] C. Pelea, S. Breaz, Multialgebras and term functions over the algebra of their nonvoid subsets, Mathematica, vol. 43(2) (2001), pp. 143–149
[20] H. E. Pickett, Homomorphisms and subalgebras of multialgebras, Pacific Journal of Mathematics, vol. 21 (1967), pp. 327–342 | DOI
[21] U. Rivieccio, Implicative twist-structures, Algebra Universalis, vol. 71(2) (2014), pp. 155–186 | DOI
[22] M. H. Stone, The Theory of Representations for Boolean Algebras, Transactions of the American Mathematical Society, vol. 40 (1936), pp. 37–111 | DOI
[23] G. V. Toledo, Multialgebras and non-deterministic semantics applied to paraconsistent logics, Ph.D. thesis, University of Campinas, Campinas, SP, Brazil (2022), URL: https://repositorio.unicamp.br/acervo/detalhe/1244055
[24] J. van Oosten, Basic Category Theory, Basic Research in Computer Science. BRICS Lecture Series LS-95-1. Ultrecht University, Netherlands (1995), URL: https://www.brics.dk/LS/95/1/BRICS-LS-95-1.ps.gz
[25] M. Walicki, S. Meldal, Multialgebras, power algebras and complete calculi of identities and inclusions, [in:] E. Astesiano, G. Reggio, A. Tarlecki (eds.), Recent Trends in Data Type Specification, Springer Berlin Heidelberg, Berlin, Heidelberg (1995), pp. 453–468 | DOI