A Category of Ordered Algebras Equivalent to the Category of Multialgebras
Bulletin of the Section of Logic, Tome 52 (2023) no. 4, pp. 517-550.

Voir la notice de l'article provenant de la source Library of Science

It is well known that there is a correspondence between sets and complete, atomic Boolean algebras CABAs) taking a set to its power-set and, conversely, a complete, atomic Boolean algebra to its set of atomic elements. Of course, such a correspondence induces an equivalence between the opposite category of Set and the category of CABAs. We modify this result by taking multialgebras over a signature Σ, specifically those whose non-deterministic operations cannot return the empty-set, to CABAs with their zero element removed (which we call a bottomless Boolean algebra) equipped with a structure of Σ-algebra compatible with its order (that we call ord-algebras). Conversely, an ord-algebra over Σ is taken to its set of atomic elements equipped with a structure of multialgebra over Σ. This leads to an equivalence between the category of Σ-multialgebras and the category of ord-algebras over Σ. The intuition, here, is that if one wishes to do so, non-determinism may be replaced by a sufficiently rich ordering of the underlying structures.
Keywords: multialgebras, ordered algebras, non-deterministic semantics
@article{BSL_2023_52_4_a4,
     author = {Coniglio, Marcelo Esteban and de Toledo, Guilherme Vicentin},
     title = {A {Category} of {Ordered} {Algebras} {Equivalent} to the {Category} of {Multialgebras}},
     journal = {Bulletin of the Section of Logic},
     pages = {517--550},
     publisher = {mathdoc},
     volume = {52},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2023_52_4_a4/}
}
TY  - JOUR
AU  - Coniglio, Marcelo Esteban
AU  - de Toledo, Guilherme Vicentin
TI  - A Category of Ordered Algebras Equivalent to the Category of Multialgebras
JO  - Bulletin of the Section of Logic
PY  - 2023
SP  - 517
EP  - 550
VL  - 52
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2023_52_4_a4/
LA  - en
ID  - BSL_2023_52_4_a4
ER  - 
%0 Journal Article
%A Coniglio, Marcelo Esteban
%A de Toledo, Guilherme Vicentin
%T A Category of Ordered Algebras Equivalent to the Category of Multialgebras
%J Bulletin of the Section of Logic
%D 2023
%P 517-550
%V 52
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2023_52_4_a4/
%G en
%F BSL_2023_52_4_a4
Coniglio, Marcelo Esteban; de Toledo, Guilherme Vicentin. A Category of Ordered Algebras Equivalent to the Category of Multialgebras. Bulletin of the Section of Logic, Tome 52 (2023) no. 4, pp. 517-550. http://geodesic.mathdoc.fr/item/BSL_2023_52_4_a4/

[1] J. C. Abbott, Implicational algebras, Bulletin mathématique de la Société des Sciences Mathématiques de la République Socialiste de Roumanie, vol. 11(59)(1) (1967), pp. 3–23, URL: http://www.jstor.org/stable/43679502

[2] A. Avron, I. Lev, Canonical Propositional Gentzen-type Systems, [in:] R. Gore, A. Leitsch, T. Nipkow (eds.), Proceedings of the 1st International Joint Conference on Automated Reasoning (IJCAR 2001), vol. 2083 of LNAI, Springer Verlag (2001), pp. 529–544 | DOI

[3] M. Baaz, O. Lahav, A. Zamansky, A Finite-valued Semantics for Canonical Labelled Calculi, J. of Automated Reasoning, vol. 51 (2013), pp. 401–430 | DOI

[4] I. Bošnjak, R. Madarász, On power structures, Algebra and Discrete Mathematics, vol. 2003(2) (2003), pp. 14–35.

[5] C. Brink, Power structures, Algebra Universalis, vol. 30(2) (1993), pp. 177–216 | DOI

[6] R. H. Bruck, A Survey of Binary Systems, Springer Berlin Heidelberg (1971) | DOI

[7] W. A. Carnielli, M. E. Coniglio, Paraconsistent Logic: Consistency, Contradiction and Negation, vol. 40 of Logic, Epistemology, and the Unity of Science, Springer International Publishing, Cham, Switzerland (2016) | DOI

[8] J. Cı̄rulis, A first-order logic for multi-algebras, Novi Sad Journal of Mathematics, vol. 34(2) (2004), pp. 27–36.

[9] M. E. Coniglio, A. Sernadas, C. Sernadas, J. Rasga, A graph-theoretic account of logics, Journal of Logic and Computation, vol. 19 (2009), pp. 1281–1320 | DOI

[10] M. E. Coniglio, G. V. Toledo, Weakly Free Multialgebras, Bulletin of the Section of Logic, vol. 51(1) (2021), pp. 109–141, URL: https://czasopisma.uni.lodz.pl/bulletin/article/view/5680

[11] M. E. Coniglio, G. V. Toledo, A Category of Ordered Algebras Equivalent to the Category of Multialgebras, arXiv 2209.08158 [math.CT] (2022), URL: https://arxiv.org/abs/2209.08158

[12] H. B. Curry, Foundations of mathematical logic, 2nd ed., Dover Books on Mathematics, Dover Publications, Mineola, NY (1977).

[13] M. Dresher, O. Ore, Theory of Multigroups, American Journal of Mathematics, vol. 60(3) (1938), pp. 705–733 | DOI

[14] G. Hansoul, A duality for Boolean algebras with operators, Algebra Universalis, vol. 17(1) (1983), pp. 34–49 | DOI

[15] F. Marty, Sur une generalization de la notion de groupe, [in:] Comptes rendus du huitième Congrès des mathématiciens scandinaves tenu à Stockholm 14–18 août 1934 (1935), pp. 45–49.

[16] A. Monteiro, Cours sur les algebrés de Hilbert et de Tarski, Instituto de Matemática, Universidad Nacional del Sur, Bahía Blanca, Argentina (1960).

[17] A. Monteiro, L. Iturrioz, Les algebrés de Tarski avec un nombre fini de générateurs libres, 1965. A. Monteiro: Unpublished papers I. Notas de Lógica Matemática, 40, Universidad Nacional del Sur, Instituto de Matemática, Bahía Blanca, Argentina. (1996).

[18] F. M. Nolan, Multi algebras & related structures, Ph.D. thesis, University of Canterbury, Christchurch, New Zealand (1979), URL: http://dx.doi.org/10.26021/2302

[19] C. Pelea, S. Breaz, Multialgebras and term functions over the algebra of their nonvoid subsets, Mathematica, vol. 43(2) (2001), pp. 143–149

[20] H. E. Pickett, Homomorphisms and subalgebras of multialgebras, Pacific Journal of Mathematics, vol. 21 (1967), pp. 327–342 | DOI

[21] U. Rivieccio, Implicative twist-structures, Algebra Universalis, vol. 71(2) (2014), pp. 155–186 | DOI

[22] M. H. Stone, The Theory of Representations for Boolean Algebras, Transactions of the American Mathematical Society, vol. 40 (1936), pp. 37–111 | DOI

[23] G. V. Toledo, Multialgebras and non-deterministic semantics applied to paraconsistent logics, Ph.D. thesis, University of Campinas, Campinas, SP, Brazil (2022), URL: https://repositorio.unicamp.br/acervo/detalhe/1244055

[24] J. van Oosten, Basic Category Theory, Basic Research in Computer Science. BRICS Lecture Series LS-95-1. Ultrecht University, Netherlands (1995), URL: https://www.brics.dk/LS/95/1/BRICS-LS-95-1.ps.gz

[25] M. Walicki, S. Meldal, Multialgebras, power algebras and complete calculi of identities and inclusions, [in:] E. Astesiano, G. Reggio, A. Tarlecki (eds.), Recent Trends in Data Type Specification, Springer Berlin Heidelberg, Berlin, Heidelberg (1995), pp. 453–468 | DOI