Fundamental Relation on \((H_{v})BE\)-Algebras
Bulletin of the Section of Logic, Tome 52 (2023) no. 4, pp. 441-458.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we are going to introduce a fundamental relation on H_vBE-algebra and investigate some of properties, also construct new (H_v)BE-algebras via this relation. We show that quotient of any H_vBE-algebra via a regular regulation is an H_vBE-algebra and this quotient, via any strongly relation is a BE-algebra. Furthermore, we investigate that under what conditions some relations on H_vBE-algebra are transitive relations.
Keywords: (\(H_{v}\),\(Hyper)BE\)-algebra, fundamental relation, quotient
@article{BSL_2023_52_4_a1,
     author = {Iranmanesh, Farzad and Ghadiri, Mansour and Borumand Saeid, Arsham},
     title = {Fundamental {Relation} on {\((H_{v})BE\)-Algebras}},
     journal = {Bulletin of the Section of Logic},
     pages = {441--458},
     publisher = {mathdoc},
     volume = {52},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2023_52_4_a1/}
}
TY  - JOUR
AU  - Iranmanesh, Farzad
AU  - Ghadiri, Mansour
AU  - Borumand Saeid, Arsham
TI  - Fundamental Relation on \((H_{v})BE\)-Algebras
JO  - Bulletin of the Section of Logic
PY  - 2023
SP  - 441
EP  - 458
VL  - 52
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2023_52_4_a1/
LA  - en
ID  - BSL_2023_52_4_a1
ER  - 
%0 Journal Article
%A Iranmanesh, Farzad
%A Ghadiri, Mansour
%A Borumand Saeid, Arsham
%T Fundamental Relation on \((H_{v})BE\)-Algebras
%J Bulletin of the Section of Logic
%D 2023
%P 441-458
%V 52
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2023_52_4_a1/
%G en
%F BSL_2023_52_4_a1
Iranmanesh, Farzad; Ghadiri, Mansour; Borumand Saeid, Arsham. Fundamental Relation on \((H_{v})BE\)-Algebras. Bulletin of the Section of Logic, Tome 52 (2023) no. 4, pp. 441-458. http://geodesic.mathdoc.fr/item/BSL_2023_52_4_a1/

[1] R. A. Borzoei, A. Hasankhani, M. M. Zahedi, Y. B. Jun, On hyper K-algebras, Mathematica japonicae, vol. 52(1) (2000), pp. 113–121.

[2] J. Chvalina, Š. Hošková-Mayerová, A. D. Nezhad, General actions of hyperstructures and some applications, Analele ştiinţifice ale Universităţii" Ovidius" Constanţa. Seria Matematică, vol. 21(1) (2013), pp. 59–82 | DOI

[3] P. Corsini, Prolegmena of hypergroup theory, Aviani, Tricesimo (1993).

[4] P. Corsini, V. Leoreanu, Applications of hyperstructure theory, vol. 5, Springer Science & Business Media, New York (2013) | DOI

[5] B. Davvaz, V. Leoreanu-Fotea, Hyperring theory and applications, vol. 347, International Academic Press, Palm Harbor (2007).

[6] M. Hamidi, A. Rezaei, A. Borumand Saeid, δ-relation on dual hyper K-algebras, Journal of Intelligent & Fuzzy Systems, vol. 29(5) (2015), pp. 1889–1900 | DOI

[7] Š. Hošková-Mayerová, Topological hypergroupoids, Computers & Mathematics with Applications, vol. 64(9) (2012), pp. 2845–2849 | DOI

[8] F. Iranmanesh, M. Ghadiri, A. B. Saeid, On H_(v)BE-algebras, Miskolc Mathematical Notes, vol. 21(2) (2020), pp. 897–909 | DOI

[9] H. S. Kim, Y. H. Kim, On BE-algebras, Scientiae Mathematicae Japonicae, vol. 66(1) (2007), pp. 113–116 | DOI

[10] F. Marty, Sur une generalization de la notion de groups, [in:] 8th Scandinavian Congress of Mathematicians, Stockholm, Stockholm (1934).

[11] A. Radfar, A. Rezaei, A. B. Saeid, Hyper BE-algebras, Novi Sad Journal of Math, vol. 44(2) (2014), pp. 137–147.

[12] A. Rezaei, A. B. Saeid, On fuzzy subalgebras of BE-algebras, Afrika Matematika, vol. 22 (2011), pp. 115–127 | DOI

[13] T. Vougiouklis, The fundamental relation in hyperrings. The general hyperfield, [in:] Proceedings of the Fourth International Congress on Algebraic Hyperstructures and Applications (AHA 1990), World Scientific (1991), pp. 203–211 | DOI

[14] T. Vougiouklis, From rings to minimal H_(v)-fields, Journal of Algebraic Hyperstructures and Logical Algebras, vol. 1(3) (2020), pp. 1–14 | DOI