Extended BCK-Ideal Based on Single-Valued Neutrosophic Hyper BCK-Ideals
Bulletin of the Section of Logic, Tome 52 (2023) no. 4, pp. 411-440.

Voir la notice de l'article provenant de la source Library of Science

This paper introduces the concept of single-valued neutrosophic hyper BCK-subalgebras as a generalization and alternative of hyper BCK-algebras and on any given nonempty set constructs at least one single-valued neutrosophic hyper BCK-subalgebra and one a single-valued neutrosophic hyper BCK-ideal. In this study level subsets play the main role in the connection between singlevalued neutrosophic hyper BCK-subalgebras and hyper BCK-subalgebras and the connection between single-valued neutrosophic hyper BCK-ideals and hyper BCK-ideals. The congruence and (strongly) regular equivalence relations are the important tools for connecting hyperstructures and structures, so the major contribution of this study is to apply and introduce a (strongly) regular relation on hyper BCK-algebras and to investigate their categorical properties (quasi commutative diagram) via single-valued neutrosophic hyper BCK-ideals. Indeed, by using the single-valued neutrosophic hyper BCK-ideals, we define a congruence relation on (weak commutative) hyper BCK-algebras that under some conditions is strongly regular and the quotient of any (single-valued neutrosophic)hyper BCK-(sub)algebra via this relation is a (single-valued neutrosophic)(hyper BCK-subalgebra) BCK-(sub)algebra.
Keywords: single-valued neutrosophic (hyper)\(BCK\)-subalgebra, quasi commutative diagram, extendable single-valued neutrosophic (hyper)\(BCK\)-ideal
@article{BSL_2023_52_4_a0,
     author = {Hamidi, Mohammad},
     title = {Extended {BCK-Ideal} {Based} on {Single-Valued} {Neutrosophic} {Hyper} {BCK-Ideals}},
     journal = {Bulletin of the Section of Logic},
     pages = {411--440},
     publisher = {mathdoc},
     volume = {52},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2023_52_4_a0/}
}
TY  - JOUR
AU  - Hamidi, Mohammad
TI  - Extended BCK-Ideal Based on Single-Valued Neutrosophic Hyper BCK-Ideals
JO  - Bulletin of the Section of Logic
PY  - 2023
SP  - 411
EP  - 440
VL  - 52
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2023_52_4_a0/
LA  - en
ID  - BSL_2023_52_4_a0
ER  - 
%0 Journal Article
%A Hamidi, Mohammad
%T Extended BCK-Ideal Based on Single-Valued Neutrosophic Hyper BCK-Ideals
%J Bulletin of the Section of Logic
%D 2023
%P 411-440
%V 52
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2023_52_4_a0/
%G en
%F BSL_2023_52_4_a0
Hamidi, Mohammad. Extended BCK-Ideal Based on Single-Valued Neutrosophic Hyper BCK-Ideals. Bulletin of the Section of Logic, Tome 52 (2023) no. 4, pp. 411-440. http://geodesic.mathdoc.fr/item/BSL_2023_52_4_a0/

[1] R. A. Borzooei, R. Ameri, M. Hamidi, Fundamental relation on hyper BCKalgebras, Analele Universitatii din Oradea-Fascicola Matematica, vol. 21(1) (2014), pp. 123–136.

[2] S. S. Goraghani, On Fuzzy Quotient BCK-algebras, TWMS Journal of Applied and Engineering Mathematics, vol. 10(1) (2020), pp. 59–68, URL: https://jaem.isikun.edu.tr/web/index.php/archive/104-vol10no1/491-on-fuzzy-quotient-bck-algebras

[3] M. Hamidi, A. B. Saied, Accessible single-valued neutrosophic graphs, Journal of Computational and Applied Mathematics, vol. 57 (2018), pp. 121–146 | DOI

[4] M. Hamidi, F. Smarandache, Single-valued neutrosophic directed (Hyper) graphs and applications in networks, Journal of Intelligent & Fuzzy Systems, vol. 37(2) (2019), pp. 2869–2885 | DOI

[5] M. Hamidi, F. Smarandache, Derivable Single Valued Neutrosophic Graphs Based on KM-single-valued neutrosophic Metric, IEEE Access, vol. 8 (2020), pp. 131076–131087 | DOI

[6] M. Hamidi, F. Smarandache, Neutro-BCK-Algebra, International Journal of Neutrosophic Science, vol. 8 (2020), pp. 110–117, URL: https://digitalrepository.unm.edu/math_fsp

[7] M. Hamidi, F. Smarandache, Single-Valued Neutro Hyper BCK-Subalgebras, Journal of Mathematics, vol. 2021 (2021), pp. 1–11 | DOI

[8] Y. Imai, K. Iseki, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Bulletin of the Section of Logic, vol. 42 (1966), pp. 19–22 | DOI

[9] Y. B. Jun, M. Khan, F. Smarandache, S. Z. Song, Length Neutrosophic Subalgebras of BCK/BCI-Algebras, Bulletin of the Section of Logic, vol. 49(4) (2020), pp. 377–400 | DOI

[10] Y. B. Jun, S. Z. Song, Inf-Hesitant Fuzzy Ideals in BCK/BCI-Algebras, Bulletin of the Section of Logic, vol. 49(1) (2020), pp. 53–78 | DOI

[11] Y. B. Jun, M. M. Zahedi, X. L. Xin, R. A. Borzooei, On hyper BCKalgebras, Italian Journal of Pure and Applied Mathematics, vol. 10 (2000), pp. 127–136.

[12] S. Khademan, M. M. Zahedi, R. A. Borzooei, Y. B. Jun, Neutrosophic Hyper BCK-Ideals, Neutrosophic Sets and Systems, vol. 27 (2019), pp. 201–217, URL: http://fs.unm.edu/NSS2/index.php/111/article/view/626

[13] S. Khademan, M. M. Zahedi, R. A. Borzooei, Y. B. Jun, Fuzzy Soft Positive Implicative Hyper BCK-ideals Of Several Types, Miskolc Mathematical Notes, vol. 22(1) (2021), pp. 299–315 | DOI

[14] N. Kouhestani, S. Mehrshad, (Semi)topological quotient BCK-algebras, Afrika Matematika, vol. 28 (2017), pp. 1235–1251 | DOI

[15] G. Muhiuddin, A. N. Al-Kenani, E. H. Roh, Y. B. Jun, Implicative Neutrosophic Quadruple BCK-Algebras and Ideals, Symmetry, vol. 11(2) (2019), p. 277 | DOI

[16] R. Naghibi, S. M. Anvariyeh, Construction of an HV-K-algebra from a BCK-algebra based on Ends Lemma, Journal of Discrete Mathematical Sciences and Cryptography, vol. 25(2) (2022), pp. 405–425 | DOI

[17] M. Shamsizadeh, Single Valued Neutrosophic General Machine, Neutrosophic Sets and Systems, vol. 490 (2022), pp. 509–530, URL: http://fs.unm.edu/NSS2/index.php/111/article/view/2502

[18] F. Smarandache, Neutrosophic Set, a generalisation of the intuitionistic single-valued neutrosophic sets, International Journal of Pure and Applied Mathematics, vol. 24 (2005), pp. 287–297, URL: https://digitalrepository.unm.edu/math_fsp

[19] F. Smarandache, Generalizations and Alternatives of Classical Algebraic Structures to Neutroalgebraic Structures and Antialgebraic Structures, Journal of Fuzzy Extension and Applications, vol. 1(2) (2020), pp. 85–87 | DOI

[20] M. M. Takallo, R. A. Borzooei, S. Z. Song, Y. B. Jun, Implicative ideals of BCK-algebras based on MBJ-neutrosophic sets, AIMS Mathematics, vol. 6(10) (1965), pp. 11029–11045 | DOI

[21] L. A. Zadeh, Fuzzy sets, Information and Control, vol. 8 (2021), pp. 338–353 | DOI

[22] Y. Zeng, H. Ren, T. Yang, S. Xiao, N. Xiong, A Novel Similarity Measure of Single-Valued Neutrosophic Sets Based on Modified Manhattan Distance and Its Applications, Electronics, vol. 11(6) (2022), p. 941 | DOI

[23] J. Zhan, M. Hamidi, A. B. Saeid, Extended Fuzzy BCK-Subalgebras, Iranian Journal of Fuzzy Systems, vol. 13(4) (2016), pp. 125–144 | DOI