On Homomorphism and Cartesian Products of Intuitionistic Fuzzy PMS-subalgebra of a PMS-algebra
Bulletin of the Section of Logic, Tome 52 (2023) no. 1, pp. 19-38.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we introduce the notion of intuitionistic fuzzy PMS-subalgebras under homomorphism and Cartesian product and investigate several properties. We study the homomorphic image and inverse image of the intuitionistic fuzzy PMS-subalgebras of a PMS-algebra, which are also intuitionistic fuzzy PMS-subalgebras of a PMS-algebra, and find some other interesting results. Furthermore, we also prove that the Cartesian product of intuitionistic fuzzy PMS-subalgebras is again an intuitionistic fuzzy PMS-subalgebra and characterize it in terms of its level sets. Finally, we consider the strongest intuitionistic fuzzy PMS-relations on an intuitionistic fuzzy set in a PMS-algebra and demonstrate that an intuitionistic fuzzy PMS-relation on an intuitionistic fuzzy set in a PMS-algebra is an intuitionistic fuzzy PMS-subalgebra if and only if the corresponding intuitionistic fuzzy set in a PMS-algebra is an intuitionistic fuzzy PMS-subalgebra of a PMS-algebra.
Keywords: PMS-algebra, intuitionistic fuzzy PMS-subalgebra, homomorphism, cartesian product and strongest intuitionistic fuzzy relation
@article{BSL_2023_52_1_a1,
     author = {Derseh, Beza Lamesgin and Alaba, Berhanu Assaye and Wondifraw, Yohannes Gedamu},
     title = {On {Homomorphism} and {Cartesian} {Products} of {Intuitionistic} {Fuzzy} {PMS-subalgebra} of a {PMS-algebra}},
     journal = {Bulletin of the Section of Logic},
     pages = {19--38},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2023_52_1_a1/}
}
TY  - JOUR
AU  - Derseh, Beza Lamesgin
AU  - Alaba, Berhanu Assaye
AU  - Wondifraw, Yohannes Gedamu
TI  - On Homomorphism and Cartesian Products of Intuitionistic Fuzzy PMS-subalgebra of a PMS-algebra
JO  - Bulletin of the Section of Logic
PY  - 2023
SP  - 19
EP  - 38
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2023_52_1_a1/
LA  - en
ID  - BSL_2023_52_1_a1
ER  - 
%0 Journal Article
%A Derseh, Beza Lamesgin
%A Alaba, Berhanu Assaye
%A Wondifraw, Yohannes Gedamu
%T On Homomorphism and Cartesian Products of Intuitionistic Fuzzy PMS-subalgebra of a PMS-algebra
%J Bulletin of the Section of Logic
%D 2023
%P 19-38
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2023_52_1_a1/
%G en
%F BSL_2023_52_1_a1
Derseh, Beza Lamesgin; Alaba, Berhanu Assaye; Wondifraw, Yohannes Gedamu. On Homomorphism and Cartesian Products of Intuitionistic Fuzzy PMS-subalgebra of a PMS-algebra. Bulletin of the Section of Logic, Tome 52 (2023) no. 1, pp. 19-38. http://geodesic.mathdoc.fr/item/BSL_2023_52_1_a1/

[1] N. Anitha, K. Arjunan, Notes on intuitionistic fuzzy ideals of Hemiring, Applied Mathematical Science, vol. 5(68) (2011), pp. 3393–3402, URL: http://www.m-hikari.com/ams/ams-2011/ams-65-68-2011/anithaAMS65-68-2011.pdf

[2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol. 20(1) (1986), pp. 87–96 | DOI

[3] K. T. Atanassov, New operations defined over the Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol. 61(2) (1994), pp. 137–142 | DOI

[4] B. L. Derseh, B. A. Assaye, Y. G. Wondifraw, Intuitionistic fuzzy PMS-subalgebra of a PMS-algebra, Korean Journal of Mathematics, vol. 29(3) (2021), pp. 563–576 | DOI

[5] M. Panigrahi, S. Nanda, Intuitionistic Fuzzy Relations over Intuitionistic Fuzzy Sets, Journal of Fuzzy Mathematics, vol. 15(3) (2007), pp. 675–688

[6] J. Peng, Intuitionistic Fuzzy B-algebras, Research Journal of Applied Sciences, Engineering and Technology, vol. 4(21) (2012), pp. 4200–4205, URL: https://maxwellsci.com/print/rjaset/v4-4200-4205.pdf

[7] P. M. S. Selvam, K. T. Nagalakshmi, Fuzzy PMS-ideals in PMS-algebras, Annals of Pure and Applied Mathematics, vol. 12(2) (2016), pp. 153–159 | DOI

[8] P. M. S. Selvam, K. T. Nagalakshmi, On PMS-algebras, Transylvanian Review, vol. 24(10) (2016), pp. 31–38.

[9] P. M. S. Selvam, K. T. Nagalakshmi, Role of homomorphism and Cartesian product over Fuzzy PMS-algebra, International Journal of Fuzzy Mathematical Archive, vol. 11(1) (2016), pp. 1622–1628 | DOI

[10] P. K. Sharma, Homomorphism of intuitionistic fuzzy groups, International Mathematical Forum, vol. 6(64) (2011), pp. 3169–3178, URL: http://www.m-hikari.com/imf-2011/61-64-2011/sharmapkIMF61-64-2011.pdf

[11] P. K. Sharma, On the direct product of Intuitionistic fuzzy groups, International Mathematical Forum, vol. 7(11) (2012), pp. 523–530 | DOI

[12] L. A. Zadeh, Fuzzy sets, Information and Control, vol. 8 (1965), pp. 338–353 | DOI