Roughness of Filters in Equality Algebras
Bulletin of the Section of Logic, Tome 52 (2023) no. 1, pp. 1-18.

Voir la notice de l'article provenant de la source Library of Science

Rough set theory is an excellent mathematical tool for the analysis of a vague description of actions in decision problems. Now, in this paper by considering the notion of an equality algebra, the notion of the lower and the upper approximations are introduced and some properties of them are given. Moreover, it is proved that the lower and the upper approximations define an interior operator and a closure operator, respectively. Also, using D-lower and D-upper approximation, conditions for a nonempty subset to be definable are provided and investigated that under which condition D-lower and D-upper approximation can be filter.
Keywords: equality algebra, approximation space, D-lower approximation, D-upper approximation, filter, D-lower filter, D-upper filter
@article{BSL_2023_52_1_a0,
     author = {Rezaei, Gholam Reza and Borzooei, Rajab Ali and Aaly Kologani, Mona and Jun, Young Bae},
     title = {Roughness of {Filters} in {Equality} {Algebras}},
     journal = {Bulletin of the Section of Logic},
     pages = {1--18},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2023_52_1_a0/}
}
TY  - JOUR
AU  - Rezaei, Gholam Reza
AU  - Borzooei, Rajab Ali
AU  - Aaly Kologani, Mona
AU  - Jun, Young Bae
TI  - Roughness of Filters in Equality Algebras
JO  - Bulletin of the Section of Logic
PY  - 2023
SP  - 1
EP  - 18
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2023_52_1_a0/
LA  - en
ID  - BSL_2023_52_1_a0
ER  - 
%0 Journal Article
%A Rezaei, Gholam Reza
%A Borzooei, Rajab Ali
%A Aaly Kologani, Mona
%A Jun, Young Bae
%T Roughness of Filters in Equality Algebras
%J Bulletin of the Section of Logic
%D 2023
%P 1-18
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2023_52_1_a0/
%G en
%F BSL_2023_52_1_a0
Rezaei, Gholam Reza; Borzooei, Rajab Ali; Aaly Kologani, Mona; Jun, Young Bae. Roughness of Filters in Equality Algebras. Bulletin of the Section of Logic, Tome 52 (2023) no. 1, pp. 1-18. http://geodesic.mathdoc.fr/item/BSL_2023_52_1_a0/

[1] R. Biswas, S. Nanda, Rough groups and rough subgroups, Bulletin of the Polish Academy of Sciences Mathematics, vol. 42(3) (1994), pp. 251–254 | DOI

[2] T. B. Iwiński, Algebraic approach to rough sets, Bulletin of the Polish Academy of Sciences, vol. 35 (1987), pp. 673–683 | DOI

[3] S. Jenei, Equality algebras, Studia Logica, vol. 56(2) (2010), pp. 183–186 | DOI

[4] S. Jenei, Equality algebras, Studing Logics, vol. 100 (2012), pp. 1201–1209.

[5] S. Jenei, Kóródi, On the variety of equality algebras, Fuzzy Logic and Technology, (2011), pp. 153–155 | DOI

[6] Y. B. Jun, Roughness of ideals in BCK-algebras, Scientiae Mathematicae Japonicae, vol. 7 (2002), pp. 115–119.

[7] Y. B. Jun, K. H. Kim, Rough set theory applied to BCC-algebras, International Mathematical Forum, vol. 2(41-44) (2007), pp. 2023–2029 | DOI

[8] N. Kuroki, Rough ideals in semigroups, Information Sciences, vol. 100 (1997), pp. 139–163 | DOI

[9] N. Kuroki, J. N. Mordeson, Structure of rough sets and rough groups, Journal of Fuzzy Mathematics, vol. 5 (1997), pp. 183–191.

[10] V. Novák, B. D. Baets, EQ-algebras, Fuzzy Sets and Systems, vol. 160(20) (2009), pp. 2956–2978 | DOI

[11] Z. Pawlak, Rough sets, International Journal of Computer and Information Sciences, vol. 11(5) (1982), pp. 341–356 | DOI

[12] S. Rasouli, B. Davvaz, Roughness in MV-algebras, Information Sciences, vol. 180(5) (2010), pp. 737–747 | DOI

[13] F. Zebardast, R. A. Borzooei, M. A. Kologani, Results on equality algebras, Information Sciences, vol. 381 (2017), pp. 270–282 | DOI