Voir la notice de l'article provenant de la source Library of Science
@article{BSL_2021_50_3_a3, author = {Chen, Jinsheng and van Ditmarsch, Hans and Greco, Giuseppe and Tzimoulis, Apostolos}, title = {Neighbourhood {Semantics} for {Graded} {Modal} {Logic}}, journal = {Bulletin of the Section of Logic}, pages = {373--395}, publisher = {mathdoc}, volume = {50}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BSL_2021_50_3_a3/} }
TY - JOUR AU - Chen, Jinsheng AU - van Ditmarsch, Hans AU - Greco, Giuseppe AU - Tzimoulis, Apostolos TI - Neighbourhood Semantics for Graded Modal Logic JO - Bulletin of the Section of Logic PY - 2021 SP - 373 EP - 395 VL - 50 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BSL_2021_50_3_a3/ LA - en ID - BSL_2021_50_3_a3 ER -
%0 Journal Article %A Chen, Jinsheng %A van Ditmarsch, Hans %A Greco, Giuseppe %A Tzimoulis, Apostolos %T Neighbourhood Semantics for Graded Modal Logic %J Bulletin of the Section of Logic %D 2021 %P 373-395 %V 50 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BSL_2021_50_3_a3/ %G en %F BSL_2021_50_3_a3
Chen, Jinsheng; van Ditmarsch, Hans; Greco, Giuseppe; Tzimoulis, Apostolos. Neighbourhood Semantics for Graded Modal Logic. Bulletin of the Section of Logic, Tome 50 (2021) no. 3, pp. 373-395. http://geodesic.mathdoc.fr/item/BSL_2021_50_3_a3/
[1] [1] L. Aceto, A. Ingolfsdottir, J. Sack, Resource bisimilarity and graded bisimilarity coincide, Information Processing Letters, vol. 111(2) (2010), pp. 68–76 | DOI
[2] [2] C. Cerrato, General canonical models for graded normal logics (Graded modalities IV), Studia Logica, vol. 49(2) (1990), pp. 241–252 | DOI
[3] [3] C. Cerrato, Decidability by filtrations for graded normal logics (graded modalities V), Studia Logica, vol. 53(1) (1994), pp. 61–74 | DOI
[4] [4] B. F. Chellas, Modal logic: an introduction, Cambridge University Press (1980).
[5] [5] J. Chen, G. Greco, A. Palmigiano, A. Tzimoulis, Non normal logics: semantic analysis and proof theory, [in:] Proc. of WoLLIC, vol. 11541 of LNCS, Springer (2019), pp. 99–118 | DOI
[6] [6] F. De Caro, Graded modalities, II (canonical models), Studia Logica, vol. 47(1) (1988), pp. 1–10 | DOI
[7] [7] M. de Rijke, A note on graded modal logic, Studia Logica, vol. 64(2) (2000), pp. 271–283 | DOI
[8] [8] K. Fine, In so many possible worlds., Notre Dame Journal of formal logic, vol. 13(4) (1972), pp. 516–520 | DOI
[9] [9] L. F. Goble, Grades of modality, Logique et Analyse, vol. 13(51) (1970), pp. 323–334.
[10] [10] H. H. Hansen, Monotonic modal logics, ILLC Report Nr: PP-2003-24, University of Amsterdam (2003).
[11] [11] D. Kaplan, S5 with multiple possibility, Journal of Symbolic Logic, vol. 35(2) (1970), p. 355 | DOI
[12] [12] M. Ma, K. Sano, How to update neighbourhood models, Journal of Logic and Computation, vol. 28(8) (2018), pp. 1781–1804 | DOI
[13] [13] M. Ma, H. van Ditmarsch, Dynamic Graded Epistemic Logic, The Review of Symbolic Logic, vol. 12(4) (2019), pp. 663–684 | DOI
[14] [14] E. Pacuit, Neighborhood semantics for modal logic, Short Textbooks in Logic, Springer (2017) | DOI
[15] [15] W. van der Hoek, On the semantics of graded modalities, Journal of Applied Non-Classical Logics, vol. 2(1) (1992), pp. 81–123.
[16] [16] W. van der Hoek, J.-J. C. Meyer, Graded modalities in epistemic logic, [in:] International Symposium on Logical Foundations of Computer Science, Springer (1992), pp. 503–514 | DOI