Neighbourhood Semantics for Graded Modal Logic
Bulletin of the Section of Logic, Tome 50 (2021) no. 3, pp. 373-395.

Voir la notice de l'article provenant de la source Library of Science

We introduce a class of neighbourhood frames for graded modal logic embedding Kripke frames into neighbourhood frames. This class of neighbourhood frames is shown to be first-order definable but not modally definable. We also obtain a new definition of graded bisimulation with respect to Kripke frames by modifying the definition of monotonic bisimulation.
Keywords: Graded modal logic, neighbourhood frames, bisimulation
@article{BSL_2021_50_3_a3,
     author = {Chen, Jinsheng and van Ditmarsch, Hans and Greco, Giuseppe and Tzimoulis, Apostolos},
     title = {Neighbourhood {Semantics} for {Graded} {Modal} {Logic}},
     journal = {Bulletin of the Section of Logic},
     pages = {373--395},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2021_50_3_a3/}
}
TY  - JOUR
AU  - Chen, Jinsheng
AU  - van Ditmarsch, Hans
AU  - Greco, Giuseppe
AU  - Tzimoulis, Apostolos
TI  - Neighbourhood Semantics for Graded Modal Logic
JO  - Bulletin of the Section of Logic
PY  - 2021
SP  - 373
EP  - 395
VL  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2021_50_3_a3/
LA  - en
ID  - BSL_2021_50_3_a3
ER  - 
%0 Journal Article
%A Chen, Jinsheng
%A van Ditmarsch, Hans
%A Greco, Giuseppe
%A Tzimoulis, Apostolos
%T Neighbourhood Semantics for Graded Modal Logic
%J Bulletin of the Section of Logic
%D 2021
%P 373-395
%V 50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2021_50_3_a3/
%G en
%F BSL_2021_50_3_a3
Chen, Jinsheng; van Ditmarsch, Hans; Greco, Giuseppe; Tzimoulis, Apostolos. Neighbourhood Semantics for Graded Modal Logic. Bulletin of the Section of Logic, Tome 50 (2021) no. 3, pp. 373-395. http://geodesic.mathdoc.fr/item/BSL_2021_50_3_a3/

[1] [1] L. Aceto, A. Ingolfsdottir, J. Sack, Resource bisimilarity and graded bisimilarity coincide, Information Processing Letters, vol. 111(2) (2010), pp. 68–76 | DOI

[2] [2] C. Cerrato, General canonical models for graded normal logics (Graded modalities IV), Studia Logica, vol. 49(2) (1990), pp. 241–252 | DOI

[3] [3] C. Cerrato, Decidability by filtrations for graded normal logics (graded modalities V), Studia Logica, vol. 53(1) (1994), pp. 61–74 | DOI

[4] [4] B. F. Chellas, Modal logic: an introduction, Cambridge University Press (1980).

[5] [5] J. Chen, G. Greco, A. Palmigiano, A. Tzimoulis, Non normal logics: semantic analysis and proof theory, [in:] Proc. of WoLLIC, vol. 11541 of LNCS, Springer (2019), pp. 99–118 | DOI

[6] [6] F. De Caro, Graded modalities, II (canonical models), Studia Logica, vol. 47(1) (1988), pp. 1–10 | DOI

[7] [7] M. de Rijke, A note on graded modal logic, Studia Logica, vol. 64(2) (2000), pp. 271–283 | DOI

[8] [8] K. Fine, In so many possible worlds., Notre Dame Journal of formal logic, vol. 13(4) (1972), pp. 516–520 | DOI

[9] [9] L. F. Goble, Grades of modality, Logique et Analyse, vol. 13(51) (1970), pp. 323–334.

[10] [10] H. H. Hansen, Monotonic modal logics, ILLC Report Nr: PP-2003-24, University of Amsterdam (2003).

[11] [11] D. Kaplan, S5 with multiple possibility, Journal of Symbolic Logic, vol. 35(2) (1970), p. 355 | DOI

[12] [12] M. Ma, K. Sano, How to update neighbourhood models, Journal of Logic and Computation, vol. 28(8) (2018), pp. 1781–1804 | DOI

[13] [13] M. Ma, H. van Ditmarsch, Dynamic Graded Epistemic Logic, The Review of Symbolic Logic, vol. 12(4) (2019), pp. 663–684 | DOI

[14] [14] E. Pacuit, Neighborhood semantics for modal logic, Short Textbooks in Logic, Springer (2017) | DOI

[15] [15] W. van der Hoek, On the semantics of graded modalities, Journal of Applied Non-Classical Logics, vol. 2(1) (1992), pp. 81–123.

[16] [16] W. van der Hoek, J.-J. C. Meyer, Graded modalities in epistemic logic, [in:] International Symposium on Logical Foundations of Computer Science, Springer (1992), pp. 503–514 | DOI