A Note on Gödel-Dummet Logic LC
Bulletin of the Section of Logic, Tome 50 (2021) no. 3, pp. 325-335.

Voir la notice de l'article provenant de la source Library of Science

Let A_0,A_1,...,A_n be (possibly) distintict wffs, n being an odd number equal to or greater than 1. Intuitionistic Propositional Logic IPC plus the axiom (A_0→ A_1)∨ ...∨ (A_n-1→ A_n)∨ (A_n→ A_0) is equivalent to Gödel-Dummett logic LC. However, if n is an even number equal to or greater than 2, IPC plus the said axiom is a sublogic of LC.
Keywords: Intermediate logics, Gödel-Dummet logic LC
@article{BSL_2021_50_3_a2,
     author = {Robles, Gemma and M\'endez, Jos\'e M.},
     title = {A {Note} on {G\"odel-Dummet} {Logic} {LC}},
     journal = {Bulletin of the Section of Logic},
     pages = {325--335},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2021_50_3_a2/}
}
TY  - JOUR
AU  - Robles, Gemma
AU  - Méndez, José M.
TI  - A Note on Gödel-Dummet Logic LC
JO  - Bulletin of the Section of Logic
PY  - 2021
SP  - 325
EP  - 335
VL  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2021_50_3_a2/
LA  - en
ID  - BSL_2021_50_3_a2
ER  - 
%0 Journal Article
%A Robles, Gemma
%A Méndez, José M.
%T A Note on Gödel-Dummet Logic LC
%J Bulletin of the Section of Logic
%D 2021
%P 325-335
%V 50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2021_50_3_a2/
%G en
%F BSL_2021_50_3_a2
Robles, Gemma; Méndez, José M. A Note on Gödel-Dummet Logic LC. Bulletin of the Section of Logic, Tome 50 (2021) no. 3, pp. 325-335. http://geodesic.mathdoc.fr/item/BSL_2021_50_3_a2/

[1] [1] A. R. Anderson, N. D. Belnap Jr., Entailment. The Logic of Relevance and Necessity, vol. I, Princeton University Press, Princeton, NJ (1975).

[2] [2] M. Dummett, A propositional calculus with denumerable matrix, Journal of Symbolic Logic, vol. 24(2) (1959), pp. 97–106 | DOI

[3] [3] K. Gödel, Zum intuitionistischen Aussagenkalkül, Anzeiger der Akademie der Wissenschaften in Wien, vol. 69 (1932), pp. 65–66.

[4] [4] D. D. Jongh, F. S. Maleki, Below Gödel-Dummett, [in:] Booklet of abstracts of Syntax meets Semantics 2019 (SYSMICS 2019), Institute of Logic, Language and Computation, University of Amsterdam (2019), pp. 99–102.

[5] [5] J. Moschovakis, Intuitionistic Logic, [in:] E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, winter 2018 ed. (2018), URL: https://plato.stanford.edu/archives/win2018/entries/logic-intuitionistic

[6] [6] G. Robles, J. M. Méndez, A binary Routley semantics for intuitionistic De Morgan minimal logic HM and its extensions, Logic Journal of the IGPL, vol. 23(2) (2014), pp. 174–193 | DOI

[7] [7] J. K. Slaney, MaGIC, Matrix Generator for Implication Connectives: Version 2.1, Notes and Guide (1995), http://users.cecs.anu.edu.au/jks/magic.html