Tense Operators on BL-algebras and Their Applications
Bulletin of the Section of Logic, Tome 50 (2021) no. 3, pp. 299-324.

Voir la notice de l'article provenant de la source Library of Science

In this paper, the notions of tense operators and tense filters in BL-algebras are introduced and several characterizations of them are obtained. Also, the relation among tense BL-algebras, tense MV-algebras and tense Boolean algebras are investigated. Moreover, it is shown that the set of all tense filters of a BL-algebra is complete sublattice of F(L) of all filters of BL-algebra L. Also, maximal tense filters and simple tense BL-algebras and the relation between them are studied. Finally, the notions of tense congruence relations in tense BL-algebras and strict tense BL-algebras are introduced and an one-to-one correspondence between tense filters and tense congruences relations induced by tense filters are provided.
Keywords: (simple) tense BL-algebra, tense operators, tense filter, tense congruence
@article{BSL_2021_50_3_a1,
     author = {Paad, Akbar},
     title = {Tense {Operators} on {BL-algebras} and {Their} {Applications}},
     journal = {Bulletin of the Section of Logic},
     pages = {299--324},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2021_50_3_a1/}
}
TY  - JOUR
AU  - Paad, Akbar
TI  - Tense Operators on BL-algebras and Their Applications
JO  - Bulletin of the Section of Logic
PY  - 2021
SP  - 299
EP  - 324
VL  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2021_50_3_a1/
LA  - en
ID  - BSL_2021_50_3_a1
ER  - 
%0 Journal Article
%A Paad, Akbar
%T Tense Operators on BL-algebras and Their Applications
%J Bulletin of the Section of Logic
%D 2021
%P 299-324
%V 50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2021_50_3_a1/
%G en
%F BSL_2021_50_3_a1
Paad, Akbar. Tense Operators on BL-algebras and Their Applications. Bulletin of the Section of Logic, Tome 50 (2021) no. 3, pp. 299-324. http://geodesic.mathdoc.fr/item/BSL_2021_50_3_a1/

[1] [1] M. Botur, I. Chajda, R. Halaš, M. Kolařík, Tense operators on basic algebras, International Journal of Theoretical Physics, vol. 50 (2011), pp. 3737–3749 | DOI

[2] [2] J. P. Burgess, Basic Tense Logic, [in:] D. M. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic, Springer Netherlands, Dordrecht (2002), pp. 1–42 | DOI

[3] [3] I. Chajda, Algebraic axiomatization of tense intuitionistic logic, Open Mathematics, vol. 9(5) (2011), pp. 1185–1191, URL: http://eudml.org/doc/269762

[4] [4] I. Chajda, M. Kolařík, Dynamic effect algebras, Mathematica Slovaca, vol. 62(3) (2012), pp. 379–388 | DOI

[5] [5] D. Diaconescu, G. Georgescu, Tense Operators on MV-Algebras and Łukasiewicz-Moisil Algebras, Fundamenta Informaticae, vol. 81(4) (2007), pp. 379–408.

[6] [6] A. V. Figallo, G. Gallardo, G. Pelaitay, Tense operators on m-symmetric algebras, International Mathematical Forum, vol. 41 (2011), pp. 2007–2014.

[7] [7] A. V. Figallo, G. Pelaitay, Tense operators on SHn-algebras, Pioneer Journal Algebra Number Theory and its Applications, vol. 1 (2011), pp. 33–41.

[8] [8] P. Hájek, Metamathematics of fuzzy logic, Springer Netherlands, Dordrecht (1988) | DOI

[9] [9] T. Kowalski, Varieties of tense algebras, Reports on Mathematical Logic, vol. 32 (1998), pp. 53–95.

[10] [10] C. Lele, J. B. Nganou, MV-algebras derived from ideals in BL-algebras, Fuzzy Sets and Systems, vol. 218 (2013), pp. 103–113 | DOI

[11] [11] A. D. Nola, G. Georgescu, A. Iorgulescu, Pseudo BL-algebras: Part I, Multiple-Valued Logic, vol. 8(5–6) (2000), pp. 673–714.

[12] [12] A. D. Nola, L. Leuştean, Compact representations of BL-algebras, Archive for Mathematical Logic, vol. 42 (2003), pp. 737–761 | DOI