Towards a Logic of Value and Disagreement via Imprecise Measures
Bulletin of the Section of Logic, Tome 50 (2021) no. 2, pp. 131-149.

Voir la notice de l'article provenant de la source Library of Science

After putting forward a formal account of value disagreement via imprecise measures, I develop a logic of value attribution and of (dis)agreement based on (exact) truthmaker semantics.
Keywords: value, disagreement, truthmaker semantics, hyperintensionality
@article{BSL_2021_50_2_a1,
     author = {Faroldi, Federico L. G.},
     title = {Towards a {Logic} of {Value} and {Disagreement} via {Imprecise} {Measures}},
     journal = {Bulletin of the Section of Logic},
     pages = {131--149},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2021_50_2_a1/}
}
TY  - JOUR
AU  - Faroldi, Federico L. G.
TI  - Towards a Logic of Value and Disagreement via Imprecise Measures
JO  - Bulletin of the Section of Logic
PY  - 2021
SP  - 131
EP  - 149
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2021_50_2_a1/
LA  - en
ID  - BSL_2021_50_2_a1
ER  - 
%0 Journal Article
%A Faroldi, Federico L. G.
%T Towards a Logic of Value and Disagreement via Imprecise Measures
%J Bulletin of the Section of Logic
%D 2021
%P 131-149
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2021_50_2_a1/
%G en
%F BSL_2021_50_2_a1
Faroldi, Federico L. G. Towards a Logic of Value and Disagreement via Imprecise Measures. Bulletin of the Section of Logic, Tome 50 (2021) no. 2, pp. 131-149. http://geodesic.mathdoc.fr/item/BSL_2021_50_2_a1/

[1] [1] H. Andréka, M. Ryan, P.-Y. Schobbens, Operators and Laws for Combining Preference Relations, Journal of Logic and Computation, vol. 12(1) (2002), pp. 13–53 | DOI

[2] [2] A. Anglberger, F. L. G. Faroldi, J. Korbmacher, An Exact Truthmaker Semantics for Obligation and Permission, [in:] O. Roy, A. Tamminga, M. Willer (eds.), Deontic Logic and Normative Systems, DEON16, College Publications, London (2016), pp. 16–31.

[3] [3] R. J. Aumann, Utility Theory without the Completeness Axiom, Econometrica, vol. 30(3) (1962), pp. 445–462 | DOI

[4] [4] F. Berto, D. Nolan, Hyperintensionality, [in:] E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, spring 2021 ed., Metaphysics Research Lab, Stanford University (2021).

[5] [5] R. Chang, Parity, Interval Value, and Choice, Ethics, vol. 115(2) (2005), pp. 331–350 | DOI

[6] [6] R. Chang, Value Incomparability and Incommensurability, [in:] I. Hirose, J. Olson (eds.), The Oxford Handbook of Value Theory, Oxford University Press (2015) | DOI

[7] [7] R. Chang, Parity: An Intuitive Case, Ratio, vol. 29(4) (2016), pp. 395–411.

[8] [8] C. Constantinescu, Value Incomparability and Indeterminacy, Ethical Theory and Moral Practice, vol. 15(1) (2012), pp. 57–70 | DOI

[9] [9] M. J. Cresswell, Hyperintensional Logic, Studia Logica, vol. 34(1) (1975), pp. 25–38 | DOI

[10] [10] F. Dietrich, C. List, What Matters and How It Matters: A Choice-Theoretic Representation of Moral Theories, The Philosophical Review, (2017), pp. 421–479 | DOI

[11] [11] L. Elkin, G. Wheeler, Resolving Peer Disagreements Through Imprecise Probabilities, Nous, vol. LII(2) (2018), pp. 260–278 | DOI

[12] [12] F. L. G. Faroldi, Modeling Value Disagreement via Imprecise Measures, 2017.

[13] [13] F. L. G. Faroldi, Hyperintensionality and Normativity, Springer, Dordrecht (2019) | DOI

[14] [14] K. Fine, Angellic Content, Journal of Philosophical Logic, vol. 45(2) (2016), pp. 199–226 | DOI

[15] [15] K. Fine, Truthmaker Semantics, [in:] B. Hale, C. Wright, A. Miller (eds.), A Companion to the Philosophy of Language, 2nd ed., Blackwell, London (2017), pp. 556–577.

[16] [16] J. Gert, Value and Parity, Ethics, vol. 114(3) (2004), pp. 492–510 | DOI

[17] [17] J. Gert, Parity, Preference and Puzzlement, Theoria, vol. 81(3) (2015), pp. 249–271 | DOI

[18] [18] C. Hare, Take the Sugar, Analysis, vol. 70(2) (2010), pp. 237–247 | DOI

[19] [19] W. Krysztofiak, Algebraic Models of Mental Number Axes: Part II, Axiomathes, vol. 26(2) (2016), pp. 123–155 | DOI

[20] [20] W. Krysztofiak, Representational Structures of Arithmetical Thinking: Part I, Axiomathes, vol. 26(1) (2016), pp. 1–40 | DOI

[21] [21] H. Leitgeb, HYPE: A System of Hyperintensional Logic (with an Application to Semantic Paradoxes), Journal of Philosophical Logic, vol. 48(2) (2019), pp. 305–405 | DOI

[22] [22] D. McCarthy, K. Mikkola, T. Thomas, Aggregation for General Populations Without Continuity or Completeness, [in:] MPRA Paper No. 80820, University Library of Munich, Germany (2017).

[23] [23] D. McCarthy, K. Mikkola, T. Thomas, Representation of Strongly Independent Preorders by Sets of Scalar-Valued Functions, [in:] MPRA Paper No. 79284, University Library of Munich, Germany (2017).

[24] [24] D. McCarthy, K. Mikkola, T. Thomas, Representation of Strongly Independent Preorders by Vector-Valued Functions, [in:] MPRA Paper No. 80806, University Library of Munich, Germany (2017).

[25] [25] W. Rabinowicz, Value Relations, Theoria, vol. 74(1) (2008), pp. 18–49 | DOI

[26] [26] W. Rabinowicz, I—Wlodek Rabinowicz: Incommensurability and Vagueness, Aristotelian Society Supplementary Volume, vol. 83(1) (2009), pp. 71–94 | DOI

[27] [27] R. Suszko, An essay in the formal theory of extension and of intension, Studia Logica, vol. 20(1) (1967), pp. 7–34 | DOI

[28] [28] L. S. Temkin, Rethinking the Good: Moral Ideals and the Nature of Practical Reasoning, Oxford Ethics, Oxford University Press (2012) | DOI

[29] [29] V. Torra, Y. Narukawa, M. Sugeno (eds.), Non-Additive Measures. Theory and Applications, Springer (2014) | DOI

[30] [30] B. C. van Fraassen, Facts and Tautological Entailment, Journal of Philosophy, vol. 66(15) (1969), pp. 477–487 | DOI