Voir la notice de l'article provenant de la source Library of Science
@article{BSL_2021_50_1_a3, author = {Bandaru, Ravikumar and Saeid, Arsham Borumand and Jun, Young Bae}, title = {On {GE-algebras}}, journal = {Bulletin of the Section of Logic}, pages = {81--96}, publisher = {mathdoc}, volume = {50}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BSL_2021_50_1_a3/} }
Bandaru, Ravikumar; Saeid, Arsham Borumand; Jun, Young Bae. On GE-algebras. Bulletin of the Section of Logic, Tome 50 (2021) no. 1, pp. 81-96. http://geodesic.mathdoc.fr/item/BSL_2021_50_1_a3/
[1] J. C. Abbott, Semi-boolean algebra, Matematički Vesnik, vol. 4(19) (1967), pp. 177–198.
[2] R. A. Borzooei, S. Khosravi Shoar, Implication algebras are equivalent to the dual implicative BCK-algebras, Scientiae Mathematicae Japonicae, vol. 63(3) (2006), pp. 429–431.
[3] R. A. Borzooei, J. Shohani, On generalized Hilbert algebras, Italian Journal of Pure and Applied Mathematics, vol. 29 (2012), pp. 71–86.
[4] D. Buşneag, A note on deductive systems of a Hilbert algebra, Kobe Journal of Mathematics, vol. 2(1) (1985), pp. 29–35.
[5] D. Buşneag, Categories of algebraic logic, Editura Academiei Romane (2006).
[6] S. Celani, A note on homomorphisms of Hilbert algebras, International Journal of Mathematics and Mathematical Sciences, vol. 29(1) (2002), pp. 55–61 | DOI
[7] W. Y. C. Chen, J. S. Oliveira, Implication algebras and the Metropolis-Rota axioms for cubic lattices, Journal of Algebra, vol. 171(2) (1995), pp. 383–396 | DOI
[8] A. Diego, Sur les algèbres de Hilbert, Translated from the Spanish by Luisa Iturrioz. Collection de Logique Mathématique, Sér. A, Fasc. XXI, Gauthier-Villars, Paris; E. Nauwelaerts, Louvain (1966).
[9] A. Figallo, Jr., A. Ziliani, Remarks on Hertz algebras and implicative semilattices, Bulletin of the Section of Logic, vol. 34(1) (2005), pp. 37–42.
[10] A. V. Figallo, G. Z. Ramón, S. Saad, A note on the Hilbert algebras with infimum, Matemática Contemporânea, vol. 24 (2003), pp. 23–37, 8th Workshop on Logic, Language, Informations and Computation – WoLLIC'2001 (Brasília).
[11] S. M. Hong, Y. B. Jun, On deductive systems of Hilbert algebras, Korean Mathematical Society. Communications, vol. 11(3) (1996), pp. 595–600.
[12] Y. Imai, K. Iséki, On axiom systems of propositional calculi, XIV, Proceedings of the Japan Academy, vol. 42(1) (1966), pp. 19–22 | DOI
[13] Y. B. Jun, Commutative Hilbert algebras, Soochow Journal of Mathematics, vol. 22(4) (1996), pp. 477–484.
[14] H. S. Kim, Y. H. Kim, On BE-algebras, Scientiae Mathematicae Japonicae, vol. 66(1) (2007), pp. 113–116.
[15] A. Monteiro, Lectures on Hilbert and Tarski Algebras, Instituto de Matemática, Universidad Nacional del Sur, Bahía Blanca, Argentina (1960).
[16] A. A. Monteiro, Sur les algèbres de Heyting symétriques, Portugaliae Mathematica, vol. 39(1–4) (1980), pp. 1–237 (1985), special issue in honor of António Monteiro.