Voir la notice de l'article provenant de la source Library of Science
@article{BSL_2021_50_1_a1, author = {Tomova, Natalya}, title = {A {Semi-lattice} of {Four-valued} {Literal-paraconsistent-paracomplete} {Logics}}, journal = {Bulletin of the Section of Logic}, pages = {35--53}, publisher = {mathdoc}, volume = {50}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BSL_2021_50_1_a1/} }
Tomova, Natalya. A Semi-lattice of Four-valued Literal-paraconsistent-paracomplete Logics. Bulletin of the Section of Logic, Tome 50 (2021) no. 1, pp. 35-53. http://geodesic.mathdoc.fr/item/BSL_2021_50_1_a1/
[1] O. Arieli, A. Avron, Four-valued paradefinite logics, Studia Logica, vol. 105(6) (2017), pp. 1087–1122 | DOI
[2] D. A. Bochvar, V. K. Finn, On many-valued logics admitting formalization of the analysis of antinomies. 1, [in:] Studies in mathematical linguistics, mathematical logic and information languages, Nauka, Moscow (1972), pp. 238–295.
[3] L. Bolc, P. Borowik, Many-valued Logics: 1: Theoretical Foundations , Springer-Verlag Berlin Heidelberg (1992).
[4] J. Ciuciura, A weakly-intuitionistic logic I1, Logical Investigations, vol. 21(2) (2015), pp. 53–60.
[5] L. Y. Devyatkin, On a continual class of four-valued maximally paranormal logics, Logical Investigations, vol. 24(2) (2018), pp. 85–91, , in Russian. | DOI
[6] V. L. Fernández, Semântica de Sociedades para Lógicas n-valentes, Master's thesis, Campinas: IFCH-UNICAMP (2001).
[7] V. L. Fernández, M. E. Coniglio, Combining valuations with society semantics, Journal of Applied Non-Classical Logics, vol. 13(1) (2003), pp. 21–46 | DOI
[8] S. Jaśkowski, A propositional calculus for inconsistent deductive systems, Studia Logica, vol. 24 (1969), pp. 143–157.
[9] A. Karpenko, N. Tomova, Bochvar's three-valued logic and literal paralogics: the lattice and functional equivalence, Logic and Logical Philosophy, vol. 26(2) (2017), pp. 207–235 | DOI
[10] A. S. Karpenko, Jaśkowski's criterion and three-valued paraconsistent logics, Logic and Logical Philosophy, vol. 7 (1999), pp. 81–86 | DOI
[11] A. S. Karpenko, A maximal paraconsistent logic: The combination of two three-valued isomorphs of classical propositional logic, [in:] D. Batens, C. Mortensen, G. Priest, J.-P. Van Bendegem (eds.), Frontiers of Paraconsistent Logic, Baldock Research Studies Press (2000), pp. 181–187.
[12] A. S. Karpenko, N. E. Tomova, Bochvar's three-valued logic and literal paralogics, Institute of Philosophy of Russian Academy of Science, Moscow (2016).
[13] R. A. Lewin, I. F. Mikenberg, Literal-paraconsistent and literal-paracomplete matrices, Mathematical Logic Quarterly, vol. 52(5) (2006), pp. 478–493 | DOI
[14] E. Mendelson, Introduction to Mathematical Logic, 4th ed., Chapman Hall (1997).
[15] Y. I. Petrukhin, Deduction Normalization Theorem for Sette's Logic and Its Modifications, Moscow University Mathematics Bulletin, vol. 74(1) (2019), pp. 25–31 | DOI
[16] V. M. Popov, On the logics related to A. Arruda's system V1, Logic and Logical Philosophy, vol. 7 (1999), pp. 87–90 | DOI
[17] G. Priest, K. Tanaka, Z. Weber, Paraconsistent logic (2013), URL: http://plato.stanford.edu/entries/logic-paraconsistent , Stanford Encyclopedia of Philosophy.
[18] L. Z. Puga, N. C. A. Da Costa, On the imaginary logic of N. A. Vasiliev, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 34 (1988), pp. 205–211.
[19] A. M. Sette, On propositional calculus P1, Mathematica Japonicae, vol. 18 (1973), pp. 173–180.
[20] A. M. Sette, E. H. Alves, On the equivalence between some systems of non-classical logic, Bulletin of the Section of Logic, vol. 25(2) (1973), pp. 68–72.
[21] A. M. Sette, W. A. Carnielli, Maximal weakly-intuitionistic logics, Studia Logica, vol. 55(1) (1995), pp. 181–203 | DOI
[22] N. E. Tomova, On properties of a class of four-valued papranormal logics, Logical Investigations, vol. 24(1) (2018), pp. 75–89 | DOI
[23] N. E. Tomova, A. N. Nepeivoda, Functional properties of four-valued paralogics, Logical-Philosophical Studies, vol. 16(1–2) (2018), pp. 130–132.