A Semi-lattice of Four-valued Literal-paraconsistent-paracomplete Logics
Bulletin of the Section of Logic, Tome 50 (2021) no. 1, pp. 35-53.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we consider the class of four-valued literal-paraconsistent-paracomplete logics constructed by combination of isomorphs of classical logic CPC. These logics form a 10-element upper semi-lattice with respect to the functional embeddinig one logic into another. The mechanism of variation of paraconsistency and paracompleteness properties in logics is demonstrated on the example of two four-element lattices included in the upper semi-lattice. Functional properties and sets of tautologies of corresponding literal-paraconsistent-paracomplete matrices are investigated. Among the considered matrices there are the matrix of Puga and da Costa's logic V and the matrix of paranormal logic P1I1, which is the part of a sequence of paranormal matrices proposed by V. Fernández.
Keywords: Four-valued logics, paraconsistent logics, paracomplete logics, isomorphisms, literal-paraconsistent-paracomplete logics, semi-lattice of logics
@article{BSL_2021_50_1_a1,
     author = {Tomova, Natalya},
     title = {A {Semi-lattice} of {Four-valued} {Literal-paraconsistent-paracomplete} {Logics}},
     journal = {Bulletin of the Section of Logic},
     pages = {35--53},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2021_50_1_a1/}
}
TY  - JOUR
AU  - Tomova, Natalya
TI  - A Semi-lattice of Four-valued Literal-paraconsistent-paracomplete Logics
JO  - Bulletin of the Section of Logic
PY  - 2021
SP  - 35
EP  - 53
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2021_50_1_a1/
LA  - en
ID  - BSL_2021_50_1_a1
ER  - 
%0 Journal Article
%A Tomova, Natalya
%T A Semi-lattice of Four-valued Literal-paraconsistent-paracomplete Logics
%J Bulletin of the Section of Logic
%D 2021
%P 35-53
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2021_50_1_a1/
%G en
%F BSL_2021_50_1_a1
Tomova, Natalya. A Semi-lattice of Four-valued Literal-paraconsistent-paracomplete Logics. Bulletin of the Section of Logic, Tome 50 (2021) no. 1, pp. 35-53. http://geodesic.mathdoc.fr/item/BSL_2021_50_1_a1/

[1] O. Arieli, A. Avron, Four-valued paradefinite logics, Studia Logica, vol. 105(6) (2017), pp. 1087–1122 | DOI

[2] D. A. Bochvar, V. K. Finn, On many-valued logics admitting formalization of the analysis of antinomies. 1, [in:] Studies in mathematical linguistics, mathematical logic and information languages, Nauka, Moscow (1972), pp. 238–295.

[3] L. Bolc, P. Borowik, Many-valued Logics: 1: Theoretical Foundations , Springer-Verlag Berlin Heidelberg (1992).

[4] J. Ciuciura, A weakly-intuitionistic logic I1, Logical Investigations, vol. 21(2) (2015), pp. 53–60.

[5] L. Y. Devyatkin, On a continual class of four-valued maximally paranormal logics, Logical Investigations, vol. 24(2) (2018), pp. 85–91, , in Russian. | DOI

[6] V. L. Fernández, Semântica de Sociedades para Lógicas n-valentes, Master's thesis, Campinas: IFCH-UNICAMP (2001).

[7] V. L. Fernández, M. E. Coniglio, Combining valuations with society semantics, Journal of Applied Non-Classical Logics, vol. 13(1) (2003), pp. 21–46 | DOI

[8] S. Jaśkowski, A propositional calculus for inconsistent deductive systems, Studia Logica, vol. 24 (1969), pp. 143–157.

[9] A. Karpenko, N. Tomova, Bochvar's three-valued logic and literal paralogics: the lattice and functional equivalence, Logic and Logical Philosophy, vol. 26(2) (2017), pp. 207–235 | DOI

[10] A. S. Karpenko, Jaśkowski's criterion and three-valued paraconsistent logics, Logic and Logical Philosophy, vol. 7 (1999), pp. 81–86 | DOI

[11] A. S. Karpenko, A maximal paraconsistent logic: The combination of two three-valued isomorphs of classical propositional logic, [in:] D. Batens, C. Mortensen, G. Priest, J.-P. Van Bendegem (eds.), Frontiers of Paraconsistent Logic, Baldock Research Studies Press (2000), pp. 181–187.

[12] A. S. Karpenko, N. E. Tomova, Bochvar's three-valued logic and literal paralogics, Institute of Philosophy of Russian Academy of Science, Moscow (2016).

[13] R. A. Lewin, I. F. Mikenberg, Literal-paraconsistent and literal-paracomplete matrices, Mathematical Logic Quarterly, vol. 52(5) (2006), pp. 478–493 | DOI

[14] E. Mendelson, Introduction to Mathematical Logic, 4th ed., Chapman Hall (1997).

[15] Y. I. Petrukhin, Deduction Normalization Theorem for Sette's Logic and Its Modifications, Moscow University Mathematics Bulletin, vol. 74(1) (2019), pp. 25–31 | DOI

[16] V. M. Popov, On the logics related to A. Arruda's system V1, Logic and Logical Philosophy, vol. 7 (1999), pp. 87–90 | DOI

[17] G. Priest, K. Tanaka, Z. Weber, Paraconsistent logic (2013), URL: http://plato.stanford.edu/entries/logic-paraconsistent , Stanford Encyclopedia of Philosophy.

[18] L. Z. Puga, N. C. A. Da Costa, On the imaginary logic of N. A. Vasiliev, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 34 (1988), pp. 205–211.

[19] A. M. Sette, On propositional calculus P1, Mathematica Japonicae, vol. 18 (1973), pp. 173–180.

[20] A. M. Sette, E. H. Alves, On the equivalence between some systems of non-classical logic, Bulletin of the Section of Logic, vol. 25(2) (1973), pp. 68–72.

[21] A. M. Sette, W. A. Carnielli, Maximal weakly-intuitionistic logics, Studia Logica, vol. 55(1) (1995), pp. 181–203 | DOI

[22] N. E. Tomova, On properties of a class of four-valued papranormal logics, Logical Investigations, vol. 24(1) (2018), pp. 75–89 | DOI

[23] N. E. Tomova, A. N. Nepeivoda, Functional properties of four-valued paralogics, Logical-Philosophical Studies, vol. 16(1–2) (2018), pp. 130–132.