Length Neutrosophic Subalgebras of BCK=BCI-Algebras
Bulletin of the Section of Logic, Tome 49 (2020) no. 4, pp. 377-400.

Voir la notice de l'article provenant de la source Library of Science

Given i, j, k ∈ 1,2,3,4, the notion of (i, j, k)-length neutrosophic subalgebras in BCK=BCI-algebras is introduced, and their properties are investigated. Characterizations of length neutrosophic subalgebras are discussed by using level sets of interval neutrosophic sets. Conditions for level sets of interval neutrosophic sets to be subalgebras are provided.
Keywords: interval neutrosophic set, interval neutrosophic length, length neutrosophic subalgebra
@article{BSL_2020_49_4_a3,
     author = {Jun, Young Bae and Khan, Madad and Smarandache, Florentin and Song, Seok-Zun},
     title = {Length {Neutrosophic} {Subalgebras} of {BCK=BCI-Algebras}},
     journal = {Bulletin of the Section of Logic},
     pages = {377--400},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2020_49_4_a3/}
}
TY  - JOUR
AU  - Jun, Young Bae
AU  - Khan, Madad
AU  - Smarandache, Florentin
AU  - Song, Seok-Zun
TI  - Length Neutrosophic Subalgebras of BCK=BCI-Algebras
JO  - Bulletin of the Section of Logic
PY  - 2020
SP  - 377
EP  - 400
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2020_49_4_a3/
LA  - en
ID  - BSL_2020_49_4_a3
ER  - 
%0 Journal Article
%A Jun, Young Bae
%A Khan, Madad
%A Smarandache, Florentin
%A Song, Seok-Zun
%T Length Neutrosophic Subalgebras of BCK=BCI-Algebras
%J Bulletin of the Section of Logic
%D 2020
%P 377-400
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2020_49_4_a3/
%G en
%F BSL_2020_49_4_a3
Jun, Young Bae; Khan, Madad; Smarandache, Florentin; Song, Seok-Zun. Length Neutrosophic Subalgebras of BCK=BCI-Algebras. Bulletin of the Section of Logic, Tome 49 (2020) no. 4, pp. 377-400. http://geodesic.mathdoc.fr/item/BSL_2020_49_4_a3/

[1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol. 20(1) (1986), pp. 87–96, DOI: http://dx.doi.org/10.1016/S0165-0114(86)80034-3

[2] Y. Huang, BCI-algebra, Science Press, Beijing (2006).

[3] Y. Jun, K. Hur, K. Lee, Hyperfuzzy subalgebras of BCK=BCI-algebras, Annals of Fuzzy Mathematics and Informatics (in press).

[4] Y. Jun, S. Kim, F. Smarandache, Interval neutrosophic sets with applications in BCK=BCI-algebras, submitted to New Mathematics and Natural Computation.

[5] J. Meng, Y. Jun, BCI-algebras, Kyungmoon Sa Co., Seoul (1994).

[6] F. Smarandache, Neutrosophy, Neutrosophic Probability, Set, and Logic, ProQuest Information Learning, Ann Arbor, Michigan, USA (1998), URL: http://fs.gallup.unm.edu/eBook-neutrosophics6.pdf last edition online.

[7] F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability, American Reserch Press, Rehoboth, NM (1999).

[8] F. Smarandache, Neutrosophic set – a generalization of the intuitionistic fuzzy set, International Journal of Pure and Applied Mathematics, vol. 24(3) (2005), pp. 287–297.

[9] H. Wang, F. Smarandache, Y. Zhang, R. Sunderraman, Interval Neutrosophic Sets and Logic: Theory and Applications in Computing, no. 5 in Neutrosophic Book Series, Hexis (2005).

[10] H. Wang, F. Smarandache, Y. Zhang, R. Sunderraman, Interval Neutrosophic Sets and Logic: Theory and Applications in Computing, no. 5 in Neutrosophic Book Series, Hexis, Phoenix, Ariz, USA (2005), DOI: http://dx.doi.org/10.6084/m9.figshare.6199013.v1

[11] H. Wang, Y. Zhang, R. Sunderraman, Truth-value based interval neutrosophic sets, [in:] 2005 IEEE International on Conference Granular Computing, vol. 1 (2005), pp. 274–277, DOI: http://dx.doi.org/10.1109/GRC.2005.1547284