Voir la notice de l'article provenant de la source Library of Science
@article{BSL_2020_49_4_a3, author = {Jun, Young Bae and Khan, Madad and Smarandache, Florentin and Song, Seok-Zun}, title = {Length {Neutrosophic} {Subalgebras} of {BCK=BCI-Algebras}}, journal = {Bulletin of the Section of Logic}, pages = {377--400}, publisher = {mathdoc}, volume = {49}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BSL_2020_49_4_a3/} }
TY - JOUR AU - Jun, Young Bae AU - Khan, Madad AU - Smarandache, Florentin AU - Song, Seok-Zun TI - Length Neutrosophic Subalgebras of BCK=BCI-Algebras JO - Bulletin of the Section of Logic PY - 2020 SP - 377 EP - 400 VL - 49 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BSL_2020_49_4_a3/ LA - en ID - BSL_2020_49_4_a3 ER -
%0 Journal Article %A Jun, Young Bae %A Khan, Madad %A Smarandache, Florentin %A Song, Seok-Zun %T Length Neutrosophic Subalgebras of BCK=BCI-Algebras %J Bulletin of the Section of Logic %D 2020 %P 377-400 %V 49 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/BSL_2020_49_4_a3/ %G en %F BSL_2020_49_4_a3
Jun, Young Bae; Khan, Madad; Smarandache, Florentin; Song, Seok-Zun. Length Neutrosophic Subalgebras of BCK=BCI-Algebras. Bulletin of the Section of Logic, Tome 49 (2020) no. 4, pp. 377-400. http://geodesic.mathdoc.fr/item/BSL_2020_49_4_a3/
[1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol. 20(1) (1986), pp. 87–96, DOI: http://dx.doi.org/10.1016/S0165-0114(86)80034-3
[2] Y. Huang, BCI-algebra, Science Press, Beijing (2006).
[3] Y. Jun, K. Hur, K. Lee, Hyperfuzzy subalgebras of BCK=BCI-algebras, Annals of Fuzzy Mathematics and Informatics (in press).
[4] Y. Jun, S. Kim, F. Smarandache, Interval neutrosophic sets with applications in BCK=BCI-algebras, submitted to New Mathematics and Natural Computation.
[5] J. Meng, Y. Jun, BCI-algebras, Kyungmoon Sa Co., Seoul (1994).
[6] F. Smarandache, Neutrosophy, Neutrosophic Probability, Set, and Logic, ProQuest Information Learning, Ann Arbor, Michigan, USA (1998), URL: http://fs.gallup.unm.edu/eBook-neutrosophics6.pdf last edition online.
[7] F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability, American Reserch Press, Rehoboth, NM (1999).
[8] F. Smarandache, Neutrosophic set – a generalization of the intuitionistic fuzzy set, International Journal of Pure and Applied Mathematics, vol. 24(3) (2005), pp. 287–297.
[9] H. Wang, F. Smarandache, Y. Zhang, R. Sunderraman, Interval Neutrosophic Sets and Logic: Theory and Applications in Computing, no. 5 in Neutrosophic Book Series, Hexis (2005).
[10] H. Wang, F. Smarandache, Y. Zhang, R. Sunderraman, Interval Neutrosophic Sets and Logic: Theory and Applications in Computing, no. 5 in Neutrosophic Book Series, Hexis, Phoenix, Ariz, USA (2005), DOI: http://dx.doi.org/10.6084/m9.figshare.6199013.v1
[11] H. Wang, Y. Zhang, R. Sunderraman, Truth-value based interval neutrosophic sets, [in:] 2005 IEEE International on Conference Granular Computing, vol. 1 (2005), pp. 274–277, DOI: http://dx.doi.org/10.1109/GRC.2005.1547284