Compounding Objects
Bulletin of the Section of Logic, Tome 49 (2020) no. 2.

Voir la notice de l'article provenant de la source Library of Science

We prove a characterization theorem for filters, proper filters and ultrafilters which is a kind of converse of Łoś's theorem. It is more natural than the usual intuition of these terms as large sets of coordinates, which is actually unconvincing in the case of ultrafilters. As a bonus, we get a very simple proof of Łoś's theorem.
Keywords: Łoś's theorem, converse of Łoś's theorem, filter, proper filter, ultrafilter
@article{BSL_2020_49_2_a2,
     author = {\v{S}iki\'c, Zvonimir},
     title = {Compounding {Objects}},
     journal = {Bulletin of the Section of Logic},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2020_49_2_a2/}
}
TY  - JOUR
AU  - Šikić, Zvonimir
TI  - Compounding Objects
JO  - Bulletin of the Section of Logic
PY  - 2020
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2020_49_2_a2/
LA  - en
ID  - BSL_2020_49_2_a2
ER  - 
%0 Journal Article
%A Šikić, Zvonimir
%T Compounding Objects
%J Bulletin of the Section of Logic
%D 2020
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2020_49_2_a2/
%G en
%F BSL_2020_49_2_a2
Šikić, Zvonimir. Compounding Objects. Bulletin of the Section of Logic, Tome 49 (2020) no. 2. http://geodesic.mathdoc.fr/item/BSL_2020_49_2_a2/