Completeness, Categoricity and Imaginary Numbers: The Debate on Husserl
Bulletin of the Section of Logic, Tome 49 (2020) no. 2 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

Husserl's two notions of "definiteness" enabled him to clarify the problem of imaginary numbers. The exact meaning of these notions is a topic of much controversy. A "definite" axiom system has been interpreted as a syntactically complete theory, and also as a categorical one. I discuss whether and how far these readings manage to capture Husserl's goal of elucidating the problem of imaginary numbers, raising objections to both positions. Then, I suggest an interpretation of "absolute definiteness" as semantic completeness and argue that this notion does not suffice to explain Husserl's solution to the problem of imaginary numbers.
Keywords: Husserl, completeness, categoricity, relative and absolute definiteness, imaginary numbers
@article{BSL_2020_49_2_a1,
     author = {Aranda, V{\'\i}ctor},
     title = {Completeness, {Categoricity} and {Imaginary} {Numbers:} {The} {Debate} on {Husserl}},
     journal = {Bulletin of the Section of Logic},
     year = {2020},
     volume = {49},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2020_49_2_a1/}
}
TY  - JOUR
AU  - Aranda, Víctor
TI  - Completeness, Categoricity and Imaginary Numbers: The Debate on Husserl
JO  - Bulletin of the Section of Logic
PY  - 2020
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BSL_2020_49_2_a1/
LA  - en
ID  - BSL_2020_49_2_a1
ER  - 
%0 Journal Article
%A Aranda, Víctor
%T Completeness, Categoricity and Imaginary Numbers: The Debate on Husserl
%J Bulletin of the Section of Logic
%D 2020
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/BSL_2020_49_2_a1/
%G en
%F BSL_2020_49_2_a1
Aranda, Víctor. Completeness, Categoricity and Imaginary Numbers: The Debate on Husserl. Bulletin of the Section of Logic, Tome 49 (2020) no. 2. http://geodesic.mathdoc.fr/item/BSL_2020_49_2_a1/