Semi-Heyting Algebras and Identities of Associative Type
Bulletin of the Section of Logic, Tome 48 (2019) no. 2

Voir la notice de l'article provenant de la source Library of Science

An algebra A = 〈A, ∨, ∧, →, 0, 1〉 is a semi-Heyting algebra if 〈A, ∨, ∧, 0, 1〉 is a bounded lattice, and it satisfies the identities: x ∧ (x → y) ≈ x ∧ y, x ∧ (y → z) ≈ x ∧ [(x ∧ y) → (x ∧ z)], and x → x ≈ 1. ℋ denotes the variety of semi-Heyting algebras. Semi-Heyting algebras were introduced by the second author as an abstraction from Heyting algebras.  They share several important properties with Heyting algebras.  An identity of associative type of length 3 is a groupoid identity, both sides of which contain the same three (distinct) variables that occur in any order and that are grouped in one of the two (obvious) ways. A subvariety of ℋ is of associative type of length 3 if it is defined by a single identity of associative type of length 3. In this paper we describe all the distinct subvarieties of the variety ℋ of asociative type of length 3.  Our main result shows that there are 3 such subvarities of ℋ.
Keywords: semi-Heyting algebra, Heyting algebra, identity of associative type, subvariety of associative type
@article{BSL_2019_48_2_a3,
     author = {Cornejo, Juan M. and Sankappanavar, Hanamantagouda P.},
     title = {Semi-Heyting {Algebras} and {Identities} of {Associative} {Type}},
     journal = {Bulletin of the Section of Logic},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2019_48_2_a3/}
}
TY  - JOUR
AU  - Cornejo, Juan M.
AU  - Sankappanavar, Hanamantagouda P.
TI  - Semi-Heyting Algebras and Identities of Associative Type
JO  - Bulletin of the Section of Logic
PY  - 2019
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2019_48_2_a3/
LA  - en
ID  - BSL_2019_48_2_a3
ER  - 
%0 Journal Article
%A Cornejo, Juan M.
%A Sankappanavar, Hanamantagouda P.
%T Semi-Heyting Algebras and Identities of Associative Type
%J Bulletin of the Section of Logic
%D 2019
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2019_48_2_a3/
%G en
%F BSL_2019_48_2_a3
Cornejo, Juan M.; Sankappanavar, Hanamantagouda P. Semi-Heyting Algebras and Identities of Associative Type. Bulletin of the Section of Logic, Tome 48 (2019) no. 2. http://geodesic.mathdoc.fr/item/BSL_2019_48_2_a3/