Semi-Heyting Algebras and Identities of Associative Type
Bulletin of the Section of Logic, Tome 48 (2019) no. 2.

Voir la notice de l'article provenant de la source Library of Science

An algebra A = 〈A, ∨, ∧, →, 0, 1〉 is a semi-Heyting algebra if 〈A, ∨, ∧, 0, 1〉 is a bounded lattice, and it satisfies the identities: x ∧ (x → y) ≈ x ∧ y, x ∧ (y → z) ≈ x ∧ [(x ∧ y) → (x ∧ z)], and x → x ≈ 1. ℋ denotes the variety of semi-Heyting algebras. Semi-Heyting algebras were introduced by the second author as an abstraction from Heyting algebras.  They share several important properties with Heyting algebras.  An identity of associative type of length 3 is a groupoid identity, both sides of which contain the same three (distinct) variables that occur in any order and that are grouped in one of the two (obvious) ways. A subvariety of ℋ is of associative type of length 3 if it is defined by a single identity of associative type of length 3. In this paper we describe all the distinct subvarieties of the variety ℋ of asociative type of length 3.  Our main result shows that there are 3 such subvarities of ℋ.
Keywords: semi-Heyting algebra, Heyting algebra, identity of associative type, subvariety of associative type
@article{BSL_2019_48_2_a3,
     author = {Cornejo, Juan M. and Sankappanavar, Hanamantagouda P.},
     title = {Semi-Heyting {Algebras} and {Identities} of {Associative} {Type}},
     journal = {Bulletin of the Section of Logic},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2019_48_2_a3/}
}
TY  - JOUR
AU  - Cornejo, Juan M.
AU  - Sankappanavar, Hanamantagouda P.
TI  - Semi-Heyting Algebras and Identities of Associative Type
JO  - Bulletin of the Section of Logic
PY  - 2019
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2019_48_2_a3/
LA  - en
ID  - BSL_2019_48_2_a3
ER  - 
%0 Journal Article
%A Cornejo, Juan M.
%A Sankappanavar, Hanamantagouda P.
%T Semi-Heyting Algebras and Identities of Associative Type
%J Bulletin of the Section of Logic
%D 2019
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2019_48_2_a3/
%G en
%F BSL_2019_48_2_a3
Cornejo, Juan M.; Sankappanavar, Hanamantagouda P. Semi-Heyting Algebras and Identities of Associative Type. Bulletin of the Section of Logic, Tome 48 (2019) no. 2. http://geodesic.mathdoc.fr/item/BSL_2019_48_2_a3/