Full Cut Elimination and Interpolation for Intuitionistic Logic with Existence Predicate
Bulletin of the Section of Logic, Tome 48 (2019) no. 2, pp. 137-158
Cet article a éte moissonné depuis la source Library of Science
In previous work by Baaz and Iemhoff, a Gentzen calculus for intuitionistic logic with existence predicate is presented that satisfies partial cut elimination and Craig's interpolation property; it is also conjectured that interpolation fails for the implication-free fragment. In this paper an equivalent calculus is introduced that satisfies full cut elimination and allows a direct proof of interpolation via Maehara's lemma. In this way, it is possible to obtain much simpler interpolants and to better understand and (partly) overcome the failure of interpolation for the implication-free fragment.
Keywords:
intuitionistic logic, existence predicate, sequent calculi, cut elimination, interpolation, Maehara's lemma
@article{BSL_2019_48_2_a2,
author = {Maffezioli, Paolo and Orlandelli, Eugenio},
title = {Full {Cut} {Elimination} and {Interpolation} for {Intuitionistic} {Logic} with {Existence} {Predicate}},
journal = {Bulletin of the Section of Logic},
pages = {137--158},
year = {2019},
volume = {48},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BSL_2019_48_2_a2/}
}
TY - JOUR AU - Maffezioli, Paolo AU - Orlandelli, Eugenio TI - Full Cut Elimination and Interpolation for Intuitionistic Logic with Existence Predicate JO - Bulletin of the Section of Logic PY - 2019 SP - 137 EP - 158 VL - 48 IS - 2 UR - http://geodesic.mathdoc.fr/item/BSL_2019_48_2_a2/ LA - en ID - BSL_2019_48_2_a2 ER -
Maffezioli, Paolo; Orlandelli, Eugenio. Full Cut Elimination and Interpolation for Intuitionistic Logic with Existence Predicate. Bulletin of the Section of Logic, Tome 48 (2019) no. 2, pp. 137-158. http://geodesic.mathdoc.fr/item/BSL_2019_48_2_a2/