A Binary Quantifier for Definite Descriptions in Intuitionist Negative Free Logic: Natural Deduction and Normalisation
Bulletin of the Section of Logic, Tome 48 (2019) no. 2, pp. 81-97
Cet article a éte moissonné depuis la source Library of Science
This paper presents a way of formalising definite descriptions with a binary quantifier ℩, where ℩x[F, G] is read as `The F is G'. Introduction and elimination rules for ℩ in a system of intuitionist negative free logic are formulated. Procedures for removing maximal formulas of the form ℩x[F, G] are given, and it is shown that deductions in the system can be brought into normal form.
Keywords:
definite descriptions, negative intuitionist free logic, natural deduction, normalization
@article{BSL_2019_48_2_a0,
author = {K\"urbis, Nils},
title = {A {Binary} {Quantifier} for {Definite} {Descriptions} in {Intuitionist} {Negative} {Free} {Logic:} {Natural} {Deduction} and {Normalisation}},
journal = {Bulletin of the Section of Logic},
pages = {81--97},
year = {2019},
volume = {48},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BSL_2019_48_2_a0/}
}
TY - JOUR AU - Kürbis, Nils TI - A Binary Quantifier for Definite Descriptions in Intuitionist Negative Free Logic: Natural Deduction and Normalisation JO - Bulletin of the Section of Logic PY - 2019 SP - 81 EP - 97 VL - 48 IS - 2 UR - http://geodesic.mathdoc.fr/item/BSL_2019_48_2_a0/ LA - en ID - BSL_2019_48_2_a0 ER -
Kürbis, Nils. A Binary Quantifier for Definite Descriptions in Intuitionist Negative Free Logic: Natural Deduction and Normalisation. Bulletin of the Section of Logic, Tome 48 (2019) no. 2, pp. 81-97. http://geodesic.mathdoc.fr/item/BSL_2019_48_2_a0/