A Binary Quantifier for Definite Descriptions in Intuitionist Negative Free Logic: Natural Deduction and Normalisation
Bulletin of the Section of Logic, Tome 48 (2019) no. 2, pp. 81-97.

Voir la notice de l'article provenant de la source Library of Science

This paper presents a way of formalising definite descriptions with a binary quantifier ℩, where ℩x[F, G] is read as `The F is G'. Introduction and elimination rules for ℩ in a system of intuitionist negative free logic are formulated. Procedures for removing maximal formulas of the form ℩x[F, G] are given, and it is shown that deductions in the system can be brought into normal form.
Keywords: definite descriptions, negative intuitionist free logic, natural deduction, normalization
@article{BSL_2019_48_2_a0,
     author = {K\"urbis, Nils},
     title = {A {Binary} {Quantifier} for {Definite} {Descriptions} in {Intuitionist} {Negative} {Free} {Logic:} {Natural} {Deduction} and {Normalisation}},
     journal = {Bulletin of the Section of Logic},
     pages = {81--97},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2019_48_2_a0/}
}
TY  - JOUR
AU  - Kürbis, Nils
TI  - A Binary Quantifier for Definite Descriptions in Intuitionist Negative Free Logic: Natural Deduction and Normalisation
JO  - Bulletin of the Section of Logic
PY  - 2019
SP  - 81
EP  - 97
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2019_48_2_a0/
LA  - en
ID  - BSL_2019_48_2_a0
ER  - 
%0 Journal Article
%A Kürbis, Nils
%T A Binary Quantifier for Definite Descriptions in Intuitionist Negative Free Logic: Natural Deduction and Normalisation
%J Bulletin of the Section of Logic
%D 2019
%P 81-97
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2019_48_2_a0/
%G en
%F BSL_2019_48_2_a0
Kürbis, Nils. A Binary Quantifier for Definite Descriptions in Intuitionist Negative Free Logic: Natural Deduction and Normalisation. Bulletin of the Section of Logic, Tome 48 (2019) no. 2, pp. 81-97. http://geodesic.mathdoc.fr/item/BSL_2019_48_2_a0/