A Post-style proof of completeness theorem for symmetric relatedness Logic S
Bulletin of the Section of Logic, Tome 47 (2018) no. 3

Voir la notice de l'article provenant de la source Library of Science

One of the logic defined by Richard Epstein in a context of an analysis of subject matter relationship is Symmetric Relatedness Logic S. In the monograph [2] we can find some open problems concerning relatedness logic, a Post-style completeness theorem for logic S is one of them. Our paper introduces a solution of this metalogical issue.
Keywords: normal forms, Post-style proof of completeness, relatedness logic, relating logic
@article{BSL_2018_47_3_a1,
     author = {Klonowski, Mateusz},
     title = {A {Post-style} proof of completeness theorem for symmetric relatedness {Logic} {S}},
     journal = {Bulletin of the Section of Logic},
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2018_47_3_a1/}
}
TY  - JOUR
AU  - Klonowski, Mateusz
TI  - A Post-style proof of completeness theorem for symmetric relatedness Logic S
JO  - Bulletin of the Section of Logic
PY  - 2018
VL  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2018_47_3_a1/
LA  - en
ID  - BSL_2018_47_3_a1
ER  - 
%0 Journal Article
%A Klonowski, Mateusz
%T A Post-style proof of completeness theorem for symmetric relatedness Logic S
%J Bulletin of the Section of Logic
%D 2018
%V 47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2018_47_3_a1/
%G en
%F BSL_2018_47_3_a1
Klonowski, Mateusz. A Post-style proof of completeness theorem for symmetric relatedness Logic S. Bulletin of the Section of Logic, Tome 47 (2018) no. 3. http://geodesic.mathdoc.fr/item/BSL_2018_47_3_a1/