A Post-style proof of completeness theorem for symmetric relatedness Logic S
Bulletin of the Section of Logic, Tome 47 (2018) no. 3.

Voir la notice de l'article provenant de la source Library of Science

One of the logic defined by Richard Epstein in a context of an analysis of subject matter relationship is Symmetric Relatedness Logic S. In the monograph [2] we can find some open problems concerning relatedness logic, a Post-style completeness theorem for logic S is one of them. Our paper introduces a solution of this metalogical issue.
Keywords: normal forms, Post-style proof of completeness, relatedness logic, relating logic
@article{BSL_2018_47_3_a1,
     author = {Klonowski, Mateusz},
     title = {A {Post-style} proof of completeness theorem for symmetric relatedness {Logic} {S}},
     journal = {Bulletin of the Section of Logic},
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2018_47_3_a1/}
}
TY  - JOUR
AU  - Klonowski, Mateusz
TI  - A Post-style proof of completeness theorem for symmetric relatedness Logic S
JO  - Bulletin of the Section of Logic
PY  - 2018
VL  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2018_47_3_a1/
LA  - en
ID  - BSL_2018_47_3_a1
ER  - 
%0 Journal Article
%A Klonowski, Mateusz
%T A Post-style proof of completeness theorem for symmetric relatedness Logic S
%J Bulletin of the Section of Logic
%D 2018
%V 47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2018_47_3_a1/
%G en
%F BSL_2018_47_3_a1
Klonowski, Mateusz. A Post-style proof of completeness theorem for symmetric relatedness Logic S. Bulletin of the Section of Logic, Tome 47 (2018) no. 3. http://geodesic.mathdoc.fr/item/BSL_2018_47_3_a1/