PC-lattices: A Class of Bounded BCK-algebras
Bulletin of the Section of Logic, Tome 47 (2018) no. 1.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we define the notion of PC-lattice, as a generalization of finite positive implicative BCK-algebras with condition (S) and bounded commutative BCK-algebras. We investiate some results for Pc-lattices being a new class of BCK-lattices. Specially, we prove that any Boolean lattice is a PC-lattice and we show that if X is a PC-lattice with condition S, then X is an involutory BCK-algebra if and only if X is a commutative BCK-algebra. Finally, we prove that any PC-lattice with condition (S) is a distributive BCK-algebra.  
Keywords: PC-lattice, BCK-lattice, Involutory BCK-algebras, Bounded commutative BCK-algebras
@article{BSL_2018_47_1_a3,
     author = {Shoar, Sadegh Khosravi and Borzooei, Rajab Ali and Moradian, R. and Radfar, Atefe},
     title = {PC-lattices: {A} {Class} of {Bounded} {BCK-algebras}},
     journal = {Bulletin of the Section of Logic},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2018_47_1_a3/}
}
TY  - JOUR
AU  - Shoar, Sadegh Khosravi
AU  - Borzooei, Rajab Ali
AU  - Moradian, R.
AU  - Radfar, Atefe
TI  - PC-lattices: A Class of Bounded BCK-algebras
JO  - Bulletin of the Section of Logic
PY  - 2018
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2018_47_1_a3/
LA  - en
ID  - BSL_2018_47_1_a3
ER  - 
%0 Journal Article
%A Shoar, Sadegh Khosravi
%A Borzooei, Rajab Ali
%A Moradian, R.
%A Radfar, Atefe
%T PC-lattices: A Class of Bounded BCK-algebras
%J Bulletin of the Section of Logic
%D 2018
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2018_47_1_a3/
%G en
%F BSL_2018_47_1_a3
Shoar, Sadegh Khosravi; Borzooei, Rajab Ali; Moradian, R.; Radfar, Atefe. PC-lattices: A Class of Bounded BCK-algebras. Bulletin of the Section of Logic, Tome 47 (2018) no. 1. http://geodesic.mathdoc.fr/item/BSL_2018_47_1_a3/