PC-lattices: A Class of Bounded BCK-algebras
Bulletin of the Section of Logic, Tome 47 (2018) no. 1

Voir la notice de l'article provenant de la source Library of Science

In this paper, we define the notion of PC-lattice, as a generalization of finite positive implicative BCK-algebras with condition (S) and bounded commutative BCK-algebras. We investiate some results for Pc-lattices being a new class of BCK-lattices. Specially, we prove that any Boolean lattice is a PC-lattice and we show that if X is a PC-lattice with condition S, then X is an involutory BCK-algebra if and only if X is a commutative BCK-algebra. Finally, we prove that any PC-lattice with condition (S) is a distributive BCK-algebra.  
Keywords: PC-lattice, BCK-lattice, Involutory BCK-algebras, Bounded commutative BCK-algebras
@article{BSL_2018_47_1_a3,
     author = {Shoar, Sadegh Khosravi and Borzooei, Rajab Ali and Moradian, R. and Radfar, Atefe},
     title = {PC-lattices: {A} {Class} of {Bounded} {BCK-algebras}},
     journal = {Bulletin of the Section of Logic},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2018_47_1_a3/}
}
TY  - JOUR
AU  - Shoar, Sadegh Khosravi
AU  - Borzooei, Rajab Ali
AU  - Moradian, R.
AU  - Radfar, Atefe
TI  - PC-lattices: A Class of Bounded BCK-algebras
JO  - Bulletin of the Section of Logic
PY  - 2018
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2018_47_1_a3/
LA  - en
ID  - BSL_2018_47_1_a3
ER  - 
%0 Journal Article
%A Shoar, Sadegh Khosravi
%A Borzooei, Rajab Ali
%A Moradian, R.
%A Radfar, Atefe
%T PC-lattices: A Class of Bounded BCK-algebras
%J Bulletin of the Section of Logic
%D 2018
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2018_47_1_a3/
%G en
%F BSL_2018_47_1_a3
Shoar, Sadegh Khosravi; Borzooei, Rajab Ali; Moradian, R.; Radfar, Atefe. PC-lattices: A Class of Bounded BCK-algebras. Bulletin of the Section of Logic, Tome 47 (2018) no. 1. http://geodesic.mathdoc.fr/item/BSL_2018_47_1_a3/