Decomposition of Congruence Modular Algebras into Atomic, Atomless Locally Uniform and Anti-Uniform Parts
Bulletin of the Section of Logic, Tome 45 (2016) no. 3-4.

Voir la notice de l'article provenant de la source Library of Science

We describe here a special subdirect decomposition of algebras with modular congruence lattice. Such a decomposition (called a star-decomposition) is based on the properties of the congruence lattices of algebras. We consider four properties of lattices: atomic, atomless, locally uniform and anti-uniform. In effect, we describe a star-decomposition of a given algebra with modular congruence lattice into two or three parts associated to these properties.
Keywords: universal algebra, algebraic lattice, congruence lattice, atomic lattice, modular lattice, uniform lattice, subdirect product, star-product, decomposition of algebra
@article{BSL_2016_45_3-4_a1,
     author = {Staruch, Bogdan and Staruch, Bo\.zena},
     title = {Decomposition of {Congruence} {Modular} {Algebras} into {Atomic,} {Atomless} {Locally} {Uniform} and {Anti-Uniform} {Parts}},
     journal = {Bulletin of the Section of Logic},
     publisher = {mathdoc},
     volume = {45},
     number = {3-4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2016_45_3-4_a1/}
}
TY  - JOUR
AU  - Staruch, Bogdan
AU  - Staruch, Bożena
TI  - Decomposition of Congruence Modular Algebras into Atomic, Atomless Locally Uniform and Anti-Uniform Parts
JO  - Bulletin of the Section of Logic
PY  - 2016
VL  - 45
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2016_45_3-4_a1/
LA  - en
ID  - BSL_2016_45_3-4_a1
ER  - 
%0 Journal Article
%A Staruch, Bogdan
%A Staruch, Bożena
%T Decomposition of Congruence Modular Algebras into Atomic, Atomless Locally Uniform and Anti-Uniform Parts
%J Bulletin of the Section of Logic
%D 2016
%V 45
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2016_45_3-4_a1/
%G en
%F BSL_2016_45_3-4_a1
Staruch, Bogdan; Staruch, Bożena. Decomposition of Congruence Modular Algebras into Atomic, Atomless Locally Uniform and Anti-Uniform Parts. Bulletin of the Section of Logic, Tome 45 (2016) no. 3-4. http://geodesic.mathdoc.fr/item/BSL_2016_45_3-4_a1/