An Observation Concerning Porte’s Rule in Modal Logic
Bulletin of the Section of Logic, Tome 44 (2015) no. 1-2.

Voir la notice de l'article provenant de la source Library of Science

It is well known that no consistent normal modal logic contains (as theorems) both ◊A and ◊¬A (for any formula A). Here we observe that this claim can be strengthened to the following: for any formula A, either no consistent normal modal logic contains ◊A, or else no consistent normal modal logic contains ◊¬A.
@article{BSL_2015_44_1-2_a1,
     author = {French, Rohan and Humberstone, Lloyd},
     title = {An {Observation} {Concerning} {Porte{\textquoteright}s} {Rule} in {Modal} {Logic}},
     journal = {Bulletin of the Section of Logic},
     publisher = {mathdoc},
     volume = {44},
     number = {1-2},
     year = {2015},
     url = {http://geodesic.mathdoc.fr/item/BSL_2015_44_1-2_a1/}
}
TY  - JOUR
AU  - French, Rohan
AU  - Humberstone, Lloyd
TI  - An Observation Concerning Porte’s Rule in Modal Logic
JO  - Bulletin of the Section of Logic
PY  - 2015
VL  - 44
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2015_44_1-2_a1/
ID  - BSL_2015_44_1-2_a1
ER  - 
%0 Journal Article
%A French, Rohan
%A Humberstone, Lloyd
%T An Observation Concerning Porte’s Rule in Modal Logic
%J Bulletin of the Section of Logic
%D 2015
%V 44
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2015_44_1-2_a1/
%F BSL_2015_44_1-2_a1
French, Rohan; Humberstone, Lloyd. An Observation Concerning Porte’s Rule in Modal Logic. Bulletin of the Section of Logic, Tome 44 (2015) no. 1-2. http://geodesic.mathdoc.fr/item/BSL_2015_44_1-2_a1/