Existence of Positive Solutions for a Three-Point Boundary Value Problem with Fractional $q$-Differences
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 4 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

In this paper, we consider the following nonlinear $q$-fractional three-point boundary value problem \begin{equation} (D_{q}^{\alpha}u)(t) + f(t,u(t))=0, \quad 0 t 1, \quad 2 \alpha 3,\\ u(0) = (D_qu)(0) = 0, \quad (D_qu)(1) = \beta (D_qu)(\eta), \end{equation} where $0\beta\eta^{\alpha-2}1$. By the properties of the Green function and the lower and upper solution method, some new existence to the above boundary value problem are established. As applications, examples are presented to illustrate the main results.
Classification : 26A33, 34B18, 34B27
@article{BMMS_2014_37_4_a3,
     author = {Yueqiang Song},
     title = {Existence of {Positive} {Solutions} for a {Three-Point} {Boundary} {Value} {Problem}  with {Fractional} $q${-Differences}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2014},
     volume = {37},
     number = {4},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_4_a3/}
}
TY  - JOUR
AU  - Yueqiang Song
TI  - Existence of Positive Solutions for a Three-Point Boundary Value Problem  with Fractional $q$-Differences
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2014
VL  - 37
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/BMMS_2014_37_4_a3/
ID  - BMMS_2014_37_4_a3
ER  - 
%0 Journal Article
%A Yueqiang Song
%T Existence of Positive Solutions for a Three-Point Boundary Value Problem  with Fractional $q$-Differences
%J Bulletin of the Malaysian Mathematical Society
%D 2014
%V 37
%N 4
%U http://geodesic.mathdoc.fr/item/BMMS_2014_37_4_a3/
%F BMMS_2014_37_4_a3
Yueqiang Song. Existence of Positive Solutions for a Three-Point Boundary Value Problem  with Fractional $q$-Differences. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 4. http://geodesic.mathdoc.fr/item/BMMS_2014_37_4_a3/