An Operator Karamata Inequality
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 4
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
We present an operator version of the Karamata inequality. More precisely, we prove that if $A$ is a selfadjoint element of a unital $C^*$-algebra $\mathscr{A}$ ,ρ is a state on $\mathscr{A}$ , the functions f ;g are continuous on the spectrum σ(A) of A such that $0$ $m$ $1$ ≤$f(s)$ ≤ $M$ $1$ , $0$ $m$ $2$ ≤ $g(s)$ ≤ $M$ $2$ for all $s\in \sigma(A)$ and $K=\left(\sqrt{m_1m_2}+\sqrt{M_1M_2}\right)/\left(\sqrt{m_1M_2}+\sqrt{M_1m_2}\right)$ then
We also give some applications.
| $K^{-2}\le \frac{\rho(f(A)g(A))}{\rho(f(A)) \rho(g(A))}\le K^2.$ |
Classification :
Primary 47A63; Secondary 47B25, 15A60
@article{BMMS_2014_37_4_a2,
author = {M. S. Moslehian and M. Niezgoda and R. Raji\'c},
title = {An {Operator} {Karamata} {Inequality}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2014},
volume = {37},
number = {4},
url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_4_a2/}
}
M. S. Moslehian; M. Niezgoda; R. Rajić. An Operator Karamata Inequality. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 4. http://geodesic.mathdoc.fr/item/BMMS_2014_37_4_a2/