An Operator Karamata Inequality
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 4 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

We present an operator version of the Karamata inequality. More precisely, we prove that if $A$ is a selfadjoint element of a unital $C^*$-algebra $\mathscr{A}$ ,ρ is a state on $\mathscr{A}$ , the functions f ;g are continuous on the spectrum σ(A) of A such that $0$ $m$ $1$$f(s)$$M$ $1$ , $0$ $m$ $2$$g(s)$$M$ $2$ for all $s\in \sigma(A)$ and $K=\left(\sqrt{m_1m_2}+\sqrt{M_1M_2}\right)/\left(\sqrt{m_1M_2}+\sqrt{M_1m_2}\right)$ then

$K^{-2}\le \frac{\rho(f(A)g(A))}{\rho(f(A)) \rho(g(A))}\le K^2.$

We also give some applications.
Classification : Primary 47A63; Secondary 47B25, 15A60
@article{BMMS_2014_37_4_a2,
     author = {M. S. Moslehian and M. Niezgoda and R. Raji\'c},
     title = {An {Operator} {Karamata} {Inequality}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2014},
     volume = {37},
     number = {4},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_4_a2/}
}
TY  - JOUR
AU  - M. S. Moslehian
AU  - M. Niezgoda
AU  - R. Rajić
TI  - An Operator Karamata Inequality
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2014
VL  - 37
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/BMMS_2014_37_4_a2/
ID  - BMMS_2014_37_4_a2
ER  - 
%0 Journal Article
%A M. S. Moslehian
%A M. Niezgoda
%A R. Rajić
%T An Operator Karamata Inequality
%J Bulletin of the Malaysian Mathematical Society
%D 2014
%V 37
%N 4
%U http://geodesic.mathdoc.fr/item/BMMS_2014_37_4_a2/
%F BMMS_2014_37_4_a2
M. S. Moslehian; M. Niezgoda; R. Rajić. An Operator Karamata Inequality. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 4. http://geodesic.mathdoc.fr/item/BMMS_2014_37_4_a2/