Existence of Solutions for a Coupled System of Fractional Differential Equations
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 4
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
In this paper, by using the coincidence degree theory, we consider the following Neumann boundary value problem for a coupled system of fractional differential equations
where $D_{0^+}^\alpha$, $D_{0^+}^\beta$ are the standard Caputo fractional derivative, $ 1 \alpha \leq 2$, $1 \beta \leq 2$. A new result on the existence of solutions for above fractional boundary value problem is obtained.
| $ \left\{ \begin{array}{ll} D_{0^+}^{\alpha}u(t)=f(t,v(t),v'(t)), \ \ t\in (0,1), \\ D_{0^+}^{\beta}v(t)=g(t,u(t),u'(t)), \ \ t\in (0,1), \\ u'(0)=u'(1)=0,\ v'(0)=v'(1)=0, \end{array} \right. $ |
Classification :
34B15
@article{BMMS_2014_37_4_a16,
author = {Zhigang Hu and Wenbin Liu and Wenjuan Rui},
title = {Existence of {Solutions} for a {Coupled} {System} of {Fractional} {Differential} {Equations}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2014},
volume = {37},
number = {4},
url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_4_a16/}
}
TY - JOUR AU - Zhigang Hu AU - Wenbin Liu AU - Wenjuan Rui TI - Existence of Solutions for a Coupled System of Fractional Differential Equations JO - Bulletin of the Malaysian Mathematical Society PY - 2014 VL - 37 IS - 4 UR - http://geodesic.mathdoc.fr/item/BMMS_2014_37_4_a16/ ID - BMMS_2014_37_4_a16 ER -
Zhigang Hu; Wenbin Liu; Wenjuan Rui. Existence of Solutions for a Coupled System of Fractional Differential Equations. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 4. http://geodesic.mathdoc.fr/item/BMMS_2014_37_4_a16/