Existence of Solutions for a Coupled System of Fractional Differential Equations
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 4 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

In this paper, by using the coincidence degree theory, we consider the following Neumann boundary value problem for a coupled system of fractional differential equations

$ \left\{ \begin{array}{ll} D_{0^+}^{\alpha}u(t)=f(t,v(t),v'(t)), \ \ t\in (0,1), \\ D_{0^+}^{\beta}v(t)=g(t,u(t),u'(t)), \ \ t\in (0,1), \\ u'(0)=u'(1)=0,\ v'(0)=v'(1)=0, \end{array} \right. $

where $D_{0^+}^\alpha$, $D_{0^+}^\beta$ are the standard Caputo fractional derivative, $ 1 \alpha \leq 2$, $1 \beta \leq 2$. A new result on the existence of solutions for above fractional boundary value problem is obtained.
Classification : 34B15
@article{BMMS_2014_37_4_a16,
     author = {Zhigang Hu and Wenbin Liu and Wenjuan Rui},
     title = {Existence of {Solutions} for a {Coupled} {System} of {Fractional} {Differential} {Equations}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2014},
     volume = {37},
     number = {4},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_4_a16/}
}
TY  - JOUR
AU  - Zhigang Hu
AU  - Wenbin Liu
AU  - Wenjuan Rui
TI  - Existence of Solutions for a Coupled System of Fractional Differential Equations
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2014
VL  - 37
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/BMMS_2014_37_4_a16/
ID  - BMMS_2014_37_4_a16
ER  - 
%0 Journal Article
%A Zhigang Hu
%A Wenbin Liu
%A Wenjuan Rui
%T Existence of Solutions for a Coupled System of Fractional Differential Equations
%J Bulletin of the Malaysian Mathematical Society
%D 2014
%V 37
%N 4
%U http://geodesic.mathdoc.fr/item/BMMS_2014_37_4_a16/
%F BMMS_2014_37_4_a16
Zhigang Hu; Wenbin Liu; Wenjuan Rui. Existence of Solutions for a Coupled System of Fractional Differential Equations. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 4. http://geodesic.mathdoc.fr/item/BMMS_2014_37_4_a16/