Ramsey Algebras and Strongly Reductible Ultrafilters
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 4
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Hindman's Theorem says that every finite coloring of the positive natural numbers has a monochromatic set of finite sums. A Ramsey algebra is a structure that satisfies an analogue of Hindman's Theorem. It is known that Martin's Axiom implies the existence of strongly summable ultrafilters, that is nonprincipal ultrafilters generated by sets of finite sums. Strongly reductible ultrafilters are analogues of strongly summable ultrafilters. Assuming Martin's Axiom, this paper shows the existence of nonprincipal strongly reductible ultrafilters for a nondegenerate Ramsey algebra.
Classification :
03E50, 05D10
@article{BMMS_2014_37_4_a0,
author = {Wen Chean Teh},
title = {Ramsey {Algebras} and {Strongly} {Reductible} {Ultrafilters}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2014},
volume = {37},
number = {4},
url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_4_a0/}
}
Wen Chean Teh. Ramsey Algebras and Strongly Reductible Ultrafilters. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 4. http://geodesic.mathdoc.fr/item/BMMS_2014_37_4_a0/