Linear Operators that Preserve Term Ranks of Matrices over Semirings
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 3 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

The term rank of a matrix $A$ is the least number of lines (rows or columns) needed to include all the nonzero entries in $A$, and is a well-known upper bound for many standard and non-standard matrix ranks, and is one of the most important combinatorially. In this paper, we obtain a characterization of linear operators that preserve term ranks of matrices over antinegative semirings. That is, we show that a linear operator $T$ on a matrix space over antinegative semirings preserves term rank if and only if $T$ preserves any two term ranks $k$ and $l$ if and only if $T$ strongly preserves any one term rank $k$.
Classification : 15A86, 15A03, 15A04
@article{BMMS_2014_37_3_a9,
     author = {Leroy B. Beasley and Seok-Zun Song},
     title = {Linear {Operators} that {Preserve} {Term} {Ranks} of {Matrices} over {Semirings}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2014},
     volume = {37},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a9/}
}
TY  - JOUR
AU  - Leroy B. Beasley
AU  - Seok-Zun Song
TI  - Linear Operators that Preserve Term Ranks of Matrices over Semirings
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2014
VL  - 37
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a9/
ID  - BMMS_2014_37_3_a9
ER  - 
%0 Journal Article
%A Leroy B. Beasley
%A Seok-Zun Song
%T Linear Operators that Preserve Term Ranks of Matrices over Semirings
%J Bulletin of the Malaysian Mathematical Society
%D 2014
%V 37
%N 3
%U http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a9/
%F BMMS_2014_37_3_a9
Leroy B. Beasley; Seok-Zun Song. Linear Operators that Preserve Term Ranks of Matrices over Semirings. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a9/