On A Class of $\delta$-Supplemented Modules
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 3
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Let $R$ be an arbitrary ring with identity and $M$ a right $R$-module. In this paper, we introduce a class of modules which is an analogous to that of $\delta$-supplemented modules and principally $\oplus$-supplemented modules. The module $M$ is called {\it principally $\oplus$-$\delta$-supplemented} if for any $m\in M$ there exists a direct summand $A$ of $M$ such that $M = mR + A$ and $mR\cap A$ is $\delta$-small in $A$. We prove that some results of principally $\oplus$-supplemented modules can be extended to principally $\oplus$-$\delta$-supplemented modules for this general setting. Several properties of these modules are given and it is shown that the class of principally $\oplus$-$\delta$-supplemented modules lies strictly between classes of principally $\oplus$-supplemented modules and principally $\delta$-supplemented modules. We investigate conditions which ensure that any factor modules, direct summands and direct sums of principally $\oplus$-$\delta$-supplemented modules are also principally $\oplus$-$\delta$-supplemented. We give a characterization of principally $\oplus$-$\delta$-supplemented modules over a semisimple ring and a new characterization of principally $\delta$-semiperfect rings is obtained by using principally $\oplus$-$\delta$-supplemented modules.
Classification :
32H05, 30C45
@article{BMMS_2014_37_3_a8,
author = {Burcu Ungor and Sait Halicioglu and Abdullah Harmanci},
title = {On {A} {Class} of $\delta${-Supplemented} {Modules}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2014},
volume = {37},
number = {3},
url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a8/}
}
Burcu Ungor; Sait Halicioglu; Abdullah Harmanci. On A Class of $\delta$-Supplemented Modules. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a8/