Asymptotic Behavior of Solutions of a Nonlinear Generalized Pantograph Equation with Impulses
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 3
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Sufficient conditions are obtained on the asymptotic behavior of solutions of the nonlinear generalized pantograph equation with impulses \begin{equation}\begin{cases} x'(t)+p(t)f(x(\alpha t-\tau))=0, t\geq t_{0}, \ t\neq t_{k},\\ x(t_{k})=b_{k}x(t^{-}_{k})+\frac{1-b_{k}}{\alpha}\int_{\alpha t_{k}-\tau}^{t_{k}}p\left(\frac{s+\tau}{\alpha}\right)f(x(s))ds, k=1,2,.... \end{cases} \end{equation}
Classification :
34K25, 34K45
@article{BMMS_2014_37_3_a6,
author = {Kaizhong Guan and Qisheng Wang},
title = {Asymptotic {Behavior} of {Solutions} of a {Nonlinear} {Generalized} {Pantograph} {Equation} with {Impulses}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2014},
volume = {37},
number = {3},
url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a6/}
}
TY - JOUR AU - Kaizhong Guan AU - Qisheng Wang TI - Asymptotic Behavior of Solutions of a Nonlinear Generalized Pantograph Equation with Impulses JO - Bulletin of the Malaysian Mathematical Society PY - 2014 VL - 37 IS - 3 UR - http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a6/ ID - BMMS_2014_37_3_a6 ER -
Kaizhong Guan; Qisheng Wang. Asymptotic Behavior of Solutions of a Nonlinear Generalized Pantograph Equation with Impulses. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a6/