Asymptotic Behavior of Solutions of a Nonlinear Generalized Pantograph Equation with Impulses
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 3 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Sufficient conditions are obtained on the asymptotic behavior of solutions of the nonlinear generalized pantograph equation with impulses \begin{equation}\begin{cases} x'(t)+p(t)f(x(\alpha t-\tau))=0, t\geq t_{0}, \ t\neq t_{k},\\ x(t_{k})=b_{k}x(t^{-}_{k})+\frac{1-b_{k}}{\alpha}\int_{\alpha t_{k}-\tau}^{t_{k}}p\left(\frac{s+\tau}{\alpha}\right)f(x(s))ds, k=1,2,.... \end{cases} \end{equation}
Classification : 34K25, 34K45
@article{BMMS_2014_37_3_a6,
     author = {Kaizhong Guan and Qisheng Wang},
     title = {Asymptotic {Behavior} of {Solutions} of a {Nonlinear} {Generalized} {Pantograph} {Equation} with {Impulses}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2014},
     volume = {37},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a6/}
}
TY  - JOUR
AU  - Kaizhong Guan
AU  - Qisheng Wang
TI  - Asymptotic Behavior of Solutions of a Nonlinear Generalized Pantograph Equation with Impulses
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2014
VL  - 37
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a6/
ID  - BMMS_2014_37_3_a6
ER  - 
%0 Journal Article
%A Kaizhong Guan
%A Qisheng Wang
%T Asymptotic Behavior of Solutions of a Nonlinear Generalized Pantograph Equation with Impulses
%J Bulletin of the Malaysian Mathematical Society
%D 2014
%V 37
%N 3
%U http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a6/
%F BMMS_2014_37_3_a6
Kaizhong Guan; Qisheng Wang. Asymptotic Behavior of Solutions of a Nonlinear Generalized Pantograph Equation with Impulses. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a6/