Normal Families of Meromorphic Functions with Sharing Functions
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 3
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Let $\mathcal F$ be a family of meromorphic functions in a domain $D$, let $k$ be a positive integer, and let $h(z)(\not\equiv 0, \infty)$ be a meromorphic function in $D$ such that any $f\in \mathcal F$ have neither common zeros nor common poles with $h(z)$. If, for each $f \in \mathcal F$, the multiplicity of the zeros $f$ is at least $k$, and $f=0 \Leftrightarrow f^{(k)}=0$, and $f^{(k)}(z)=h(z)\Rightarrow f(z)=h(z)$, then $\mathcal F$ is normal in $D$. This improves the results due to Xia and Xu.
Classification :
30D45
@article{BMMS_2014_37_3_a25,
author = {Dan Liu and Bingmao Deng and Degui Yang},
title = {Normal {Families} of {Meromorphic} {Functions} with {Sharing} {Functions}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2014},
volume = {37},
number = {3},
url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a25/}
}
Dan Liu; Bingmao Deng; Degui Yang. Normal Families of Meromorphic Functions with Sharing Functions. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a25/