General $\Gamma$- Hypermodules: $\Theta$ Relation, $T$- Functor and Fundamental Modules
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 3
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
The main purpose of this paper is to introduce the concept of general $\Gamma$-hyper- modules as a generalization of $\Gamma$-hypermodules, as a generalization of $\Gamma$-modules and as a generalization of modules. Then we extended the isomorphism theorems to general $\Gamma$-hypermodules. Also, it is observer that if $N$ is a normal $\Gamma$-subhypermodule of $\Gamma$-hypermodule $M$, then, $[M:N^{\ast}]$ is an abelian group. Finally, we show that there is a covariant functor between the category of general $\Gamma$-hypermodules and the category of modules.
Classification :
20N20, 16Y99
@article{BMMS_2014_37_3_a24,
author = {S. Ostadhadi-Dehkordi and M. Heidari},
title = {General $\Gamma$- {Hypermodules:} $\Theta$ {Relation,} $T$- {Functor} and {Fundamental} {Modules}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2014},
volume = {37},
number = {3},
url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a24/}
}
TY - JOUR AU - S. Ostadhadi-Dehkordi AU - M. Heidari TI - General $\Gamma$- Hypermodules: $\Theta$ Relation, $T$- Functor and Fundamental Modules JO - Bulletin of the Malaysian Mathematical Society PY - 2014 VL - 37 IS - 3 UR - http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a24/ ID - BMMS_2014_37_3_a24 ER -
S. Ostadhadi-Dehkordi; M. Heidari. General $\Gamma$- Hypermodules: $\Theta$ Relation, $T$- Functor and Fundamental Modules. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a24/