Second Order Duality for Minmax Fractional Programming Problem Involving (F,$\alpha,\rho $,d)-Type I Functions
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 3
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
In this paper, we focus our study on a minmax fractional programming problem and its second order dual. Weak, strong and strict converse duality theorems are established assuming the involved functions to be second order $\left( {F,\alpha ,\rho ,d} \right)$- type I.
Classification :
26A51, 49J35, 90C32
@article{BMMS_2014_37_3_a23,
author = {Anurag Jayswal and Ioan Stancu-Minasian and I. Ahmad},
title = {Second {Order} {Duality} for {Minmax} {Fractional} {Programming} {Problem} {Involving} {(F,}$\alpha,\rho ${,d)-Type} {I} {Functions}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2014},
volume = {37},
number = {3},
url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a23/}
}
TY - JOUR AU - Anurag Jayswal AU - Ioan Stancu-Minasian AU - I. Ahmad TI - Second Order Duality for Minmax Fractional Programming Problem Involving (F,$\alpha,\rho $,d)-Type I Functions JO - Bulletin of the Malaysian Mathematical Society PY - 2014 VL - 37 IS - 3 UR - http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a23/ ID - BMMS_2014_37_3_a23 ER -
%0 Journal Article %A Anurag Jayswal %A Ioan Stancu-Minasian %A I. Ahmad %T Second Order Duality for Minmax Fractional Programming Problem Involving (F,$\alpha,\rho $,d)-Type I Functions %J Bulletin of the Malaysian Mathematical Society %D 2014 %V 37 %N 3 %U http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a23/ %F BMMS_2014_37_3_a23
Anurag Jayswal; Ioan Stancu-Minasian; I. Ahmad. Second Order Duality for Minmax Fractional Programming Problem Involving (F,$\alpha,\rho $,d)-Type I Functions. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a23/