Second Order Duality for Minmax Fractional Programming Problem Involving (F,$\alpha,\rho $,d)-Type I Functions
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 3 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

In this paper, we focus our study on a minmax fractional programming problem and its second order dual. Weak, strong and strict converse duality theorems are established assuming the involved functions to be second order $\left( {F,\alpha ,\rho ,d} \right)$- type I.
Classification : 26A51, 49J35, 90C32
@article{BMMS_2014_37_3_a23,
     author = {Anurag Jayswal and Ioan Stancu-Minasian and I. Ahmad},
     title = {Second {Order} {Duality} for {Minmax} {Fractional} {Programming} {Problem} {Involving} {(F,}$\alpha,\rho ${,d)-Type} {I} {Functions}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2014},
     volume = {37},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a23/}
}
TY  - JOUR
AU  - Anurag Jayswal
AU  - Ioan Stancu-Minasian
AU  - I. Ahmad
TI  - Second Order Duality for Minmax Fractional Programming Problem Involving (F,$\alpha,\rho $,d)-Type I Functions
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2014
VL  - 37
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a23/
ID  - BMMS_2014_37_3_a23
ER  - 
%0 Journal Article
%A Anurag Jayswal
%A Ioan Stancu-Minasian
%A I. Ahmad
%T Second Order Duality for Minmax Fractional Programming Problem Involving (F,$\alpha,\rho $,d)-Type I Functions
%J Bulletin of the Malaysian Mathematical Society
%D 2014
%V 37
%N 3
%U http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a23/
%F BMMS_2014_37_3_a23
Anurag Jayswal; Ioan Stancu-Minasian; I. Ahmad. Second Order Duality for Minmax Fractional Programming Problem Involving (F,$\alpha,\rho $,d)-Type I Functions. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a23/