Relative Projective Dimensions
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 3 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

In $(n,d)$-ring and $n$-coherent ring theory, $n$-presented modules plays an important role. In this paper, we firstly give some new characterizations of $n$-presented modules and $n$-coherent rings. Then, we introduce the concept of $(n,0)$-projective dimension, which measures how far away a finitely generated module is from being $n$-presented and how far away a ring is from being Noetherian, for modules and rings. This dimension has nice properties when the ring in question is $n$-coherent. Some known results are extended or obtained as corollaries.
Classification : 16D10, 16E40
@article{BMMS_2014_37_3_a21,
     author = {Baiyu Ouyang and Luling Duan and Weiqing Li},
     title = {Relative {Projective} {Dimensions}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2014},
     volume = {37},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a21/}
}
TY  - JOUR
AU  - Baiyu Ouyang
AU  - Luling Duan
AU  - Weiqing Li
TI  - Relative Projective Dimensions
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2014
VL  - 37
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a21/
ID  - BMMS_2014_37_3_a21
ER  - 
%0 Journal Article
%A Baiyu Ouyang
%A Luling Duan
%A Weiqing Li
%T Relative Projective Dimensions
%J Bulletin of the Malaysian Mathematical Society
%D 2014
%V 37
%N 3
%U http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a21/
%F BMMS_2014_37_3_a21
Baiyu Ouyang; Luling Duan; Weiqing Li. Relative Projective Dimensions. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a21/