Solvability Criteria for the Equation $x^q=a$ in the Field of $p$-adic Numbers
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 3
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
We establish the solvability criteria for the equation $x^q=a$ in the field of $p$-adic numbers, for any $q$ in two cases: (i) $q$ is not divisible by $p$; (ii) $q=p$. Using these criteria we show that any $p$-adic number can be represented in finitely many different forms and we describe the algorithms to obtain the corresponding representations. Moreover it is shown that solvability problem of $x^q=a$ for any $q$ can be reduced to the cases (i) and (ii).
Classification :
11S05
@article{BMMS_2014_37_3_a20,
author = {J. M. Casas and B. A.Omirov and U. A. Rozikov},
title = {Solvability {Criteria} for the {Equation} $x^q=a$ in the {Field} of $p$-adic {Numbers}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2014},
volume = {37},
number = {3},
url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a20/}
}
TY - JOUR AU - J. M. Casas AU - B. A.Omirov AU - U. A. Rozikov TI - Solvability Criteria for the Equation $x^q=a$ in the Field of $p$-adic Numbers JO - Bulletin of the Malaysian Mathematical Society PY - 2014 VL - 37 IS - 3 UR - http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a20/ ID - BMMS_2014_37_3_a20 ER -
J. M. Casas; B. A.Omirov; U. A. Rozikov. Solvability Criteria for the Equation $x^q=a$ in the Field of $p$-adic Numbers. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a20/