Chromatic Equivalence Classes of Complete Tripartite Graphs
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 3 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

We obtain new necessary conditions on a graph which shares the same chromatic polynomial as that of the complete tripartite graph $K_{m,n,r}$. Using these, we establish the chromatic equivalence classes for $K_{1,n,n+1}$ (where $n \geq 2$). This gives a partial solution to a question raised earlier by the authors. With the same technique, we further show that $K_{n-3,n,n+1}$ is chromatically unique if $n \geq 5$. In the more general situation, we show that if $2 \leq m \leq n$, then $K_{m,n,n+1}$ is chromatically unique if $n$ is sufficiently large.
Classification : 05C31, 05C15
@article{BMMS_2014_37_3_a2,
     author = {G. L. Chia and Chee-Kit Ho},
     title = {Chromatic {Equivalence} {Classes} of {Complete} {Tripartite} {Graphs}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2014},
     volume = {37},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a2/}
}
TY  - JOUR
AU  - G. L. Chia
AU  - Chee-Kit Ho
TI  - Chromatic Equivalence Classes of Complete Tripartite Graphs
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2014
VL  - 37
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a2/
ID  - BMMS_2014_37_3_a2
ER  - 
%0 Journal Article
%A G. L. Chia
%A Chee-Kit Ho
%T Chromatic Equivalence Classes of Complete Tripartite Graphs
%J Bulletin of the Malaysian Mathematical Society
%D 2014
%V 37
%N 3
%U http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a2/
%F BMMS_2014_37_3_a2
G. L. Chia; Chee-Kit Ho. Chromatic Equivalence Classes of Complete Tripartite Graphs. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a2/