Chromatic Equivalence Classes of Complete Tripartite Graphs
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 3
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
We obtain new necessary conditions on a graph which shares the same chromatic polynomial as that of the complete tripartite graph $K_{m,n,r}$. Using these, we establish the chromatic equivalence classes for $K_{1,n,n+1}$ (where $n \geq 2$). This gives a partial solution to a question raised earlier by the authors. With the same technique, we further show that $K_{n-3,n,n+1}$ is chromatically unique if $n \geq 5$. In the more general situation, we show that if $2 \leq m \leq n$, then $K_{m,n,n+1}$ is chromatically unique if $n$ is sufficiently large.
Classification :
05C31, 05C15
@article{BMMS_2014_37_3_a2,
author = {G. L. Chia and Chee-Kit Ho},
title = {Chromatic {Equivalence} {Classes} of {Complete} {Tripartite} {Graphs}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2014},
volume = {37},
number = {3},
url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a2/}
}
G. L. Chia; Chee-Kit Ho. Chromatic Equivalence Classes of Complete Tripartite Graphs. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a2/