Weighted Endpoint Estimates for Multilinear Commutators of Marcinkiewicz Integrals
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 3
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Let $\mu_{\Omega,\vec{b}}$ be the multilinear commutator generalized by $\mu_{\Omega}$, the $n$-dimensional Marcinkiewicz integral, with $Osc_{\exp L^{^{\tau}}}(R^{n})$ functions for $\tau\ge 1$, where $Osc_{\exp L^{^{\tau}}}(R^{n})$ is a space of Orlicz type satisfying that $Osc_{\exp L^{^{\tau}}}(R^{n})=BMO(R^{n})$ if $\tau=1$ and $Osc_{\exp L^{^{\tau}}}(R^{n})\subset BMO(R^{n})$ if $\tau>1$. The authors establish the weighted weak $L\log L$-type estimates for $\mu_{\Omega,\vec{b}}$ when $\Omega$ satisfies a kind of Dini conditions.
Classification :
42B20, 42B25, 42B99
@article{BMMS_2014_37_3_a17,
author = {Jianglong Wu and Qingguo Liu},
title = {Weighted {Endpoint} {Estimates} for {Multilinear} {Commutators} of {Marcinkiewicz} {Integrals}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2014},
volume = {37},
number = {3},
url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a17/}
}
Jianglong Wu; Qingguo Liu. Weighted Endpoint Estimates for Multilinear Commutators of Marcinkiewicz Integrals. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a17/